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Foreword 

The 2024 Nobel Prize in Physics was awarded to John J. Hopfield and Geoffrey 
Hinton for foundational discoveries and inventions that enable machine learning 
with artificial neural networks. Two of the three winners of the 2024 Nobel Prize 
in Chemistry, Demis Hassabis and John Jumper, both from Google Deepmind, were 
cited for developing an AI model to solve a 50-year-old problem: predicting complex 
structures of proteins. These coveted prizes to Artificial Intelligence (AI) researchers 
bear testimony to the sweeping influence of AI. 

Driven by extraordinary strides made over the years, especially in the past decade, 
AI now has the potential to fundamentally transform human civilization. Its impor-
tance is now recognized by societies across the globe as a key technology with the 
ability to solve some of the most complex societal and engineering problems of our 
times such as universal access to healthcare and education, efficient transportation, 
increased efficiency in providing e-governance services to the public, etc. To harness 
the power of AI, large-scale national and international efforts are underway. 

AI has now matured to a level where AI applications are beginning to impact our 
daily lives: generative AI tools like ChatGPT and Gemini are now extensively used 
by researchers, students, and even public. Among the myriad of disciplines impacted 
by AI, engineering and management disciplines occupy a prominent position. AI and 
data science are now providing a major tool box to solve a wide spectrum of problems 
in engineering and management. 

There is a large corpus of textbooks and research monographs on the foundations, 
theory, and advances in artificial intelligence, machine learning (ML), and deep 
learning (DL). There is, however, an urgent need for a book that provides a conve-
nient, friendly, and yet rigorous treatment of AI and ML techniques to researchers, 
professionals, and students engaged in core engineering disciplines and also core 
management topics. This gap is splendidly filled by authors Srinivasa Raju and 
Nagesh Kumar, by bringing out their fine and timely textbook Artificial Intelligence 
and Machine Learning Techniques in Engineering and Management. 

This is a nice book accessible to anyone seeking to clearly understand and rigor-
ously apply AI techniques to problems in engineering and management disciplines. 
In particular, it will be a precious resource to undergraduate, master’s, and doctoral
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vi Foreword

students applying AI and data science to their projects and research problems. The 
coverage of topics in machine learning and deep learning models is gentle and 
thorough, focussing on the main principles. The illustrative numerical examples, 
completely worked out, elevate the utility and understandability of the contents. The 
final chapter is especially valuable, with more than 200 case studies reviewed; this 
will be a goldmine to look up detailed studies of real-world problems. 

The authors must be congratulated for conceptualizing a much needed AIML 
companion to students and researchers and for presenting the content in a lucid 
manner. For engineering and management audience, this book is a lovely resource 
on a live and lively subject. 

Y. Narahari 
Honorary Professor 

Department of Computer Science 
and Automation 

Indian Institute of Science Bangalore 
Bengaluru, Karnataka, India 
https://gtl.csa.iisc.ac.in/hari/

https://gtl.csa.iisc.ac.in/hari/


Preface 

Artificial Intelligence (AI) is becoming familiar due to the minimum requirement 
of data, facilitating accurate predictions, and minimal necessity of understanding 
the physics behind input–output relationships. Its potential to tackle non-linear 
and complex problems with greater flexibility is an added advantage. Its appli-
cations in engineering, management, and allied fields are growing exponentially. 
Over time, numerous experts introduced books and developed blogs on the theme, 
which are primarily theoretical. However, the proposed book amalgamates relevant 
theory, numerical problems, case studies, and recent advances wherever possible. We 
believe that this new dimension will greatly benefit present-generation researchers 
and students. 

The present book consists of seven chapters: (1) an introduction; (2) a 
description of performance indicators; (3) classical machine learning algorithms; 
(4) advanced machine learning algorithms; (5) fuzzy logic-based modelling 
algorithms; (6) emerging research areas, topics including, Blockchain, recent ML 
techniques, evolutionary algorithms, AI tools, the Internet of Things, big data, deci-
sion support systems, Taguchi design of experiments, data augmentation, and cross-
validation; (7) representative case studies. The appendix covers representative AI 
tools, data sources related to AI, books, and journals on AI. The present book can 
support undergraduate, postgraduate, and Ph.D. students in AI, Data Mining, and 
Soft Computing in Engineering and Management and allied fields. 

We are grateful to Prof. Yadati Narahari, Department of Computer Science 
and Automation, Indian Institute of Science, Bengaluru, who consented to write 
a Foreword for the book.
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Special acknowledgments to Vogeti Rishith Kumar for posing thought-provoking, 
out-of-box questions, providing lots of input, and unstinting support wherever neces-
sary. Heartfelt gratitude to Sistla Shashank, Prof. Alivelu Manga Parimi, Deepjyoti 
Deb, Dr. R. Madhuri, R. Bhavi Tej, Dr. Sriman Pankaj, Kathan Pranav Naik, Y. Sai 
Kiran, Pratyush Pandey, P. Sagar Subhash, Bhavesh Rahul Mishra, Harshal Nayan 
Rathi, Rahul Jauhari, Rishabh Daga, Ayushman Kar, Aakash Bansal, Kaustav Chat-
terji, and L. Ashoka Vardhan (who are presently or formerly associated with BITS) 
who contributed immensely for the book. Also, thanks to Prof. M. Janga Reddy (IIT 
Bombay), Prof. Shishir Gaur (IIT BHU), Prof. D. Graillot (EMSE France), Prof. D. V. 
Morankar (College of Military Engineering, Pune), and many others who supported 
us from time to time. 

We referred to a number of research papers and many blog sites related to 
AI. Overall, they shaped the book in its present form. We acknowledge LINDO 
SYSTEMS INC. for providing access to the LINGO software trial version, Scopus 
for research data analysis, and Python for programming support. 

We have incorporated a few portions from some of our published research papers, 
either utilizing CC BY 4.0 and CC BY-NC-ND 4.0 licenses under the open access 
category or taking permissions in case of non-open access category journals. All 
these research papers were referred at suitable places. We wholeheartedly express 
gratefulness to the publishers of these journals, IWA, Springer, ASCE and Wiley. We 
extend thanks to all the co-authors of the papers for their constant encouragement 
and support in realizing our plan to publish this book. 

We made the best possible efforts to quote all the sources in the form of acknowl-
edgements or references, but still, some would have been missed. We will incorporate 
them upon notice in the upcoming editions. 

Professor Raju appreciates the institute leadership for providing the necessary 
ecosystem for writing this book. He acknowledges the help of his wife, Gayathri 
Devi; Daughter, Sai Swetha; and son, Sai Satvik; and Parents, Gopala Rao and 
Varalakshmi, for their unstinting support. He thanks Prof. A. Vasan, Subbulakshmi 
Vasan, Dr. K. Nagajyothi, and Mr. B. Surendra for their motivating support. Professor 
Nagesh acknowledges the support of his wife Padma, daughter Sruthi, son Saketh, 
and parents Subrahmanyam and Lakshmi. 

We sincerely thank Sri D. V. Subrahmanyam for diligently checking the 
manuscript and proofs. 

We wish to thank all our colleagues, friends, and students who encouraged us 
from time to time with pleasant inquiries and inputs, which undoubtedly accelerated 
the writing of the book.
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Chapter 1 
Introduction 

1.1 Introduction 

Artificial intelligence (AI) is a comprehensive multidisciplinary research area that can 
mimic human intellect as effectively as achievable. Some tasks that are expected to 
be simulated are learning, reasoning, perceiving, recognizing patterns, and decision-
making. This process is also likely to minimize hindrances based on previous expe-
riences. There are two primary classifications of AI based on functionality, which 
are as follows: 

• Strong AI: Machines that can understand and analyze problems in various domains 
like humans. However, it has not yet reached complete reality. It is also termed 
as general AI. 

• Weak AI: Works on a specific activity or function. If data is related to the heart, 
the experience will work for that particular task effectively, not for other domains. 
It is also termed as narrow AI. 

A number of researchers viewed AI as a supporting mechanism for automation 
(Nilsson, 2009). However, most of the time, human intervention is necessary to 
understand the outcomes of AI for possible implementation with minimal challenges. 

Two important sub-categories of AI are (a) Machine Learning (ML) and (b) Deep 
Learning (DL). These are employed as vehicles to accomplish AI (Fig. 1.1).

A brief description of ML and DL is as follows (Russell & Norvig, 2010): ML 
empowers machines to learn from available datasets without explicit programming 
and architecture. It uses data trends and statistical inferences to predict. DL is a 
sub-category in ML that utilizes the philosophy of multiple hidden layers to capture 
complex data phenomena automatically. The critical differences between ML and 
DL are the feature extraction process, data requirement, and computational resources 
(Alaskar & Saba, 2021; Janiesch et al., 2021).
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Fig. 1.1 Classification of AI into ML and  DL

• DL does not require a feature extraction process. It extracts information as part of 
the learning, making it more efficient in prediction. On the contrary, ML requires 
an extensive extraction process to improve the model’s performance. 

• DL can work exceptionally well even with high-dimensional and unstructured 
raw data situations. On the other hand, ML requires pre-processing of data to 
ensure high performance. 

• Interpretability of the prediction process is relatively more complex in DL than 
in ML. 

• DL requires high computational resources due to its complex mathematical intri-
cacies and hardware. In the case of ML, the requirements for computational 
resources are less than those for DL. 

Some of the algorithms falling under ML and DL are presented (in alphabetical 
order) below for the reader’s benefit (a detailed discussion of some of these algorithms
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is presented in Chaps. 3–5). In addition, related terminology is presented here for 
the reader to understand effectively. 

• Adaptive Boosting (AdaBoost) refers to ensemble methods that make a strong 
learner from several weak learners. It concentrates on situations with high-loss 
functions to enrich total performance. 

• Adaptive Neuro-Fuzzy Inference System (ANFIS) facilitates non-linear rela-
tionships, quick learning capability, and adaptive inferences to predict complex 
situations reasonably. It can also handle noisy or inconsistent data effectively. 

• Artificial Neural Networks (ANN) can build non-linear associations between 
inputs and outputs. Their architecture comprises several layers. Every individual 
layer has a number of layers. Here, the output from each layer contributes to the 
succeeding layer. 

• Categorical Boosting (CatBoost) is similar to AdaBoost. In this context, a Deci-
sion Tree (DT) is established on a symmetricwise strategy considered to tackle 
categorical features competently. 

• Convolutional Neural Networks (CNN) are developed on the perception of local 
neural connectivity stimulated by the cognitive structure of the animal visual 
cortex. 

• eXtreme Gradient Boosting (XGBoost) is an ensemble technique established in 
levelwise (or depthwise) form. It utilizes a principle identical to that of CatBoost. 
However, formation is governed by the depth of the tree. 

• Extreme Learning Machine (ELM) employs feed-forward networks with one 
hidden layer. It converges faster than several traditional algorithms and will likely 
reach a global optimal solution. 

• Fuzzy CNN and Fuzzy LSTM (Long Short-Term Memory) capitalize on the 
advantages of CNN, LSTM, and fuzzy reasoning. They handle imprecise data 
and efficiently establish relationships. 

• K-Nearest Neighbour (KNN) stores all the datasets and classifies new datasets 
built on distance functions related to the stored datasets. 

• Light Gradient Boosting (LGBoost) uses a leafwise strategy that enables data to 
be facilitated quicker than conventional level-based techniques. 

• Linear Regression (LiR) establishes a linear association involving independent 
and dependent variables. 

• Logistic Regression (LR) predicts classes of a binary nature and utilizes the 
logistic function. 

• LSTM utilizes memory blocks. These blocks function as neurons in the hidden 
layers with the help of sigmoid and hyperbolic tangent functions. Information 
from layers is traversed through gating units to obtain the output. 

• Multi-adaptive Regression Splines (MARS) can establish flexible and inter-
pretable relationships between the variables using knot selection and forward– 
backward passes. 

• Natural Gradient Boosting (NGBoost) employs a natural gradient to build a 
probabilistic estimation with remarkably greater accuracy.
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• Random Forest (RF) uses a bagging approach to create an ensemble of DT, 
resulting in a reliable predictive model. 

• Recurrent Neural Networks (RNN) use recurrent connections, hidden states, 
activation functions, and training through back-propagation. 

• Support Vector Regression (SVR) can be used to accomplish regression analysis. 
Its primary idea is to find the best hyperplane that fits most points, minimizing 
the error. 

• Wavelet Neural Networks (WNN) use the mother wavelet to captivate information 
from primary data and disintegrate it further. 

1.2 Representative Applications of AI 

The role of AI in Engineering, Science, Management, and other domains is rapidly 
expanding over time due to its capability to handle complex relationships between 
different features, uncertainty in data, and fewer data requirements (than in the 
traditional models). Representative applications include. 

Customer Choices (Hu et al., 2023; Salminen et al., 2023) 
Energy (Szczepaniuk & Szczepaniuk, 2023) 
Financial framework (Bahoo et al., 2024) 
Inventory (Chopra & Sharma, 2021; Li et al., 2023) 
Knowledge-based management (Jarrahi et al., 2023; Taherdoost & Madanchian, 

2023) 
Manufacturing (Mypati et al., 2023; Naz et al., 2023; Plathottam et al., 2023) 
Health (Castiglioni et al., 2021; Pesapane et al., 2018; Wang et al., 2021) 
Precision agriculture (Son et al., 2024) 
Quality Engineering (Martín et al., 2023; Aldoseri et al., 2023) 
Robotics and Automation (Sarker, 2022; Soori et al., 2023). 
Recent AI applications include text mining and Natural Language Processing. 

More details are presented in Chap. 6. 

1.3 Scopus Analysis of AI 

Scopus is an abstract and citation database launched in 2004 by Elsevier. It utilizes 
data analytics to understand various aspects of research papers, including related 
metrics (Scopus Content, 2024), and can be accessed using the following simple 
process: type ‘www.scopus.com’ in Internet Explorer. The dialog box appears, with 
two critical blocks: Search within and Search documents. In the Search within option, 
the user can find many sub-options to explore. 

In summary, the accessibility of computational resources eventually accelerated 
the growth of AI. However, the user is expected to have complete domain knowledge

http://www.scopus.com
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of the mathematical framework before applying it, which is the motto of the present 
book. 

1.4 Organization 

There are seven chapters in the book. 
This chapter briefly introduces AI, ML, and DL and provides the book’s work-

flow. Chapter 2 discusses performance indicators, which judge the simulating ability 
of models and related software. Chapter 3 describes classical ML models used for 
forecasting and classification purposes: ANN, WNN, SVR, ELM, LR, and KNN. 
Activation functions are also part of this chapter. Chapter 4 describes a few advanced 
ML algorithms specifically used for forecasting. These are CNN, RNN, LSTM, 
Bi-directional (Bi)-LSTM, Gated Recurrent Units (GRU), and possible hybridiza-
tions of these algorithms. In addition, boosting algorithms, AdaBoost, XGBoost, 
and CatBoost are part of this chapter. Chapter 5 provides insight into fuzzification, 
defuzzification, FIS, ANFIS, Fuzzy Cognitive Mapping (FCM), optimization, and its 
fuzzy extension. It also comprises fuzzy-based CNN and LSTM and their hybridiza-
tion, i.e., fuzzy CNN-LSTM. Chapter 6 discusses Blockchain, Advanced ML Tech-
niques, Advanced Optimization Techniques, AI Tools, the Internet of Things (IoT), 
Big Data, Decision Support Systems (DSS), Taguchi Design of Experiments, Data 
Augmentation, and Cross-Validation. Chapter 7 presents representative case studies 
in Civil, Chemical, Mechanical, Electronics and Computer Science, Engineering, 
and Management. The purpose is to facilitate a comprehensive view regarding the 
applicability and potentiality of the methods. The appendix lists representative AI 
tools, data sources, books, and journals on AI. Figure 1.2 presents the flow of the 
topics in the chapters.

Before moving further, brief terminology on the theme of the book is presented 
below for the benefit of the readers: 

Activation function facilitates non-linearity in the network, allowing it to capture 
complex patterns. 

Architecture: It provides a holistic view of the network. 
Batch size: The number of training examples used in one iteration. 
Dropout: It is a regularization approach. 
Epoch: It represents one cycle passing through the training dataset. 
Error (Loss function): It is the deviation between simulated and observed datasets. 

The error can be positive or negative. It can also be expressed as squared deviation. 
Note that the purpose of any modelling approach is to minimize discrepancies. 

Forecasting: It is a statistical approach to predict output. 
Learning rate is the pace at which the updation of parameters can occur. 
Momentum factor: It minimizes deviations in weights and enriches the training 

mechanism.
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Fig. 1.2 The flow of the topics in the chapters

Parameters and hyperparameters: Internal elements of the model are termed as 
parameters. Hyperparameters are those parameters that significantly influence the 
training process. 

Pre-processing: It is a preliminary step before transmitting the data to the network, 
such as normalization, outlier, and identification. 

Supervised learning: It relates input and labelled output during training. In 
contrast, unsupervised learning does not have labelled output. 

Training: A mechanism to determine optimum parameters (including connection 
strengths) that minimize the error between simulated and observed data. 

Validation: Ideally, a model should not be tested on the dataset trained earlier, 
mainly for unbiased evaluation. For example, monthly rainfall and runoff data are
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available for 1970–2020. Out of which, data from 1970 to 2010 can be utilized for 
training. Accordingly, weights and other parameters are established. These and the 
last 10 years of rainfall are used to compute runoff for possible comparison with the 
observed data, as a part of testing. 

Weights are connection strengths that vary from (−∞,∞) and are continuously 
updated in the training process. 

Exercise problems and advanced review questions are part of Chaps. 2 to 6. 
Algorithms, models, and techniques are used interchangeably in the book: data, 
points, and datasets; loss function, error, and discrepancy. It is requested to note the 
same. 

Revision Questions 

1.1 What is AI? What is the mechanism behind the same? 
1.2 What are strong and weak AI? 
1.3 What are the sub-categories of AI? 
1.4 What is the philosophy of ML and DL? 
1.5 What is the significant difference between ML and DL? Compare with two 

features. 
1.6 Mention applications of AI in engineering and management. 
1.7 What is Scopus analytics? How is it useful? 
1.8 What are the challenges of applying AI to real-world problems? 

Advanced Review Questions 

1.9 Mention three views of researchers about AI. 
1.10 Can you only employ DL for every chosen problem instead of ML? If yes or 

no, justify your view. 
1.11 Can you make inferences from a few case studies where ML and DL were 

applied? 
1.12 Do you think AI is necessary in engineering and management? Justify! 
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Chapter 2 
Description of Performance Indicators 

2.1 Introduction 

The present chapter briefly discusses representative performance indicators used to 
examine the competence of the chosen ML algorithm in simulating observed data 
(Jackson et al., 2019). Binary classification-based indicators are also part of this 
chapter. 

2.2 Performance Indicators 

Mathematical descriptions of indicators are as follows. 
Let xi, yi represent observed and simulated values, respectively. μx, μy are mean of 

xi, yi and σx, σy are corresponding standard deviations. N is the number of datasets. 

a. The Sum of the Square Loss Function (SSLF) is (Eq. 2.1): 

SSLF = 
N∑

i=1 

(xi − yi)2 (2.1) 

b. Mean Square Loss Function (MSLF) is the mean of SSA (Eq. 2.2): 

MSLF = 
1 

N 
× SSLF (2.2) 

c. Root Mean Square Loss Function (RMSLF) is (Eq. 2.3): 

RMSLF =
√
MSLF (2.3)
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K. Srinivasa Raju and D. Nagesh Kumar, Artificial Intelligence and Machine Learning 
Techniques in Engineering and Management, 
https://doi.org/10.1007/978-981-96-2621-2_2 

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-2621-2_2&domain=pdf
https://doi.org/10.1007/978-981-96-2621-2_2


10 2 Description of Performance Indicators

d. Normalized Root Mean Square Loss Function (NRMSLF) is (Eq. 2.4): 

NRMSLF = 
RMSLF 

μx 
(2.4) 

e. Average Absolute Relative Loss Function (AARLF) is the ratio of the absolute 
Loss Function to the observed value (Eq. 2.5): 

AARLF = 
1 

N 

N∑

i=1

∣∣∣∣
(yi − xi) 

xi

∣∣∣∣ (2.5) 

f. Normalized Standard Loss Function (NSLF) is (Eq.  2.6): 

NSLF = 
σy 

σx 
(2.6) 

g. The coefficient of Correlation R (or CC) is a regression measure mainly in a linear 
mapping framework between simulated and observed (Eq. 2.7). It provides how 
the regression line best characterizes the data. 

R =
∑N 

i=1(xi − μx)
(
yi − μy

)

(N − 1)σxσy 
(2.7) 

h. Nash Sutcliffe Efficiency (NSE) is (Nash & Sutcliffe, 1970) (Eq.  2.8): 

NSE = 1 −
∑N 

i=1(xi − yi)2∑N 
i=1(xi − μx)2 

(2.8) 

i. Kling Gupta Efficiency (KGE) is based on correlation, variability, and mean biases 
(Gupta et al., 2009) (Eq.  2.9): 

KGE = 1 −
[(

(R − 1)2 +
(

σy 

σx 
− 1

)2 

+
(

μy 

μx 
− 1

)2
)]0.5 

(2.9) 

j. Taylor Skill Score (TSS) is based on a standard deviation of observed and 
simulated spatial correlation coefficient R (Taylor, 2001) (Eq.  2.10): 

TSS = 4(1 + R)4

(
1 + R4 

0

)( σy 

σx 
+ σx 

σy

)2 (2.10) 

R0 is the highest possible R based on the perception of the user.
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k. Fractional Skill Score (FSS) (Ma et al., 2018; Roberts & Lean, 2008) is (Eq.  2.11): 

FSS = 1 −
(

1 
N

∑N 
i=1(xi − yi)2

)

(
1 
N

∑N 
i=1 x

2 
i

)
+

(
1 
N

∑N 
i=1 y

2 
i

) (2.11) 

Lower values (ideally zero) are preferred for indicators (a–f). Higher values (ideally 
one) are preferred for indicators (g–k). Detailed information about some of the indi-
cators and their ranges is available from Moriasi et al. (2007) and Moriasi et al. 
(2015). 

Numerical problem 2.1. Table 2.1 presents the observed and simulated rainfall 
obtained by the ML algorithm. Compute indicators described in this section.

Solution: 

Related calculations are showcased in Table 2.1. 

Number of datasets = 10.

∑
x = 121 cm,

∑
y = 115 cm,

∑
xy = 1450 cm2

∑
x2 = 1525 cm2 ,

∑
y2 = 1487 cm2 

μx = 12.1 cm,  μy = 11.5 cm. 

σx = 2.6013 cm, σy = 4.2753 cm. 

Table 2.2 presents a list of indicators and corresponding values based on Eqs. 2.1– 
2.11.

Numerical problem 2.2. Table 2.3 presents the number of times noise beyond a 
certain decibels (dB) was measured using electromagnetic sensors in the manufac-
turing industry. A simulated number of occurrences from modelling is also part of 
Table 2.3. Compute NSE, CC, KGE, TSS, and FSS. Present this information using 
a bar chart.

Solution: 

Related calculations are presented in Table 2.3. 
Table 2.4 and Fig. 2.1 present indicators and corresponding values.
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Table 2.2 Indicators and 
corresponding values Indicator Value Unit 

SSLF 112 cm2 

MSLF 11.2 cm2 

RMSLF 3.3466 cm 

NRMSLF 0.2766 No unit 

AARLF 0.2467 No unit 

NSLF 1.6435 No unit 

R (or CC) 0.5845 No unit 

NSE −0.8391 No unit 

KGE 0.2324 No unit 

TSS 0.3107 No unit 

FSS 0.9628 No unit

2.3 Indicators in Binary Classification Problems 

Many indicators also exist in binary classification problems. Before moving into the 
detailed understanding of indicators, the following related definitions will be helpful. 

Confusion matrix: It is a matrix with four different possibilities of simulated and 
observed data (Fig. 2.2), and the related description is as follows:

• True positive (TP): Envisaged as positive, and it is correct. Example: It is envisaged 
that a flood will occur, and the flood has occurred. 

• False positive (FP): Envisaged as positive, and it is incorrect. Example: It is 
envisaged that a flood will occur, and the flood has not occurred (falling under 
Type 1 error). 

• False Negative (FN): Envisaged as negative, and it is incorrect. Example: It is 
envisaged that a flood will not occur, and the flood has occurred (falling under 
Type 2 error). 

• True Negative (TN): Envisaged as negative, and it is correct. Example: It is 
envisaged that a flood will not occur, and the flood has not occurred 

Some of the standard classification indicators derived from the confusion matrix 
are as follows (Agrawal, 2023; Czakon, 2023) (Eqs.  2.12–2.17): 

True Positive and False Positive Rates (TPR, FPR) = TP 

TP + FN 
, 

FP 

TN + FP 
(2.12) 

True Negative and False Negative Rates (TNR, FNR) = TN 

TP + FP 
, 

FN 

TP + FN 
(2.13) 

Precision (P) = TP 

TP + FP 
(2.14)
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Table 2.4 Indicators and 
corresponding values Indicator Value 

NSE 0.5310 

CC 0.9252 

KGE 0.6656 

TSS 0.8170 

FSS 0.9473 

Fig. 2.1 Selected indicators and their values

Fig. 2.2 Confusion matrix

F-measure = 
2 × TPR × P 

TPR + P 
(2.15) 

Accuracy = TP + TN 
TP + TN + FP + FN 

(2.16) 

Error = 1− Accuracy (2.17)
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The value of TPR gives an idea of how many correct positive results are present 
in all of the positive scenarios. On the other hand, FPR shows how many incorrect 
positive examples are present in all negative scenarios. 

Area Under the Curve-Receiver Operating Characteristic (AUC-ROC) curve 
conveys the change in the classification ability of the model with various thresh-
olds. Here, FPR and TPR are shown on the x and y axes (Fig. 2.3) (Chapi et al., 2017; 
Madhuri et al., 2021). 

Users can plot an AUC-ROC curve on a graph sheet (pairs of FPR and TPR 
for various thresholds). It can be used to compare and validate various algorithms 
(Shahabi & Hashim, 2015; Tehrany et al., 2015). The training curve is constructed 
by varying the threshold probability of a classifier, above which a dataset is assigned 
a positive class and below which is assigned a negative class. Initially, all datasets 
are classified as positive, yielding a TPR of 1 and an FPR of 0. As the threshold 
increases, TPR decreases when more positive datasets are erroneously classified as 
the negative class. 

Similarly, FPR increases as more datasets are accurately classified as the negative 
class. All datasets are classified as negative at a probability threshold of 1, giving the 
other extreme of an FPR of 1 and TPR of 0 (top right corner of the graph). A diagonal 
line usually accompanies the AUC-ROC curves to depict the behaviour of the worst 
possible classifier (i.e., a random classifier that correctly predicts 50% of the time)

Fig. 2.3 Representative AUC-ROC training curves for different algorithms (Modified and adapted 
from Madhuri et al., (2021) under CC BY-NC-ND 4.0 license) 
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(refer to Fig. 2.3). The greater distance of the AUC-ROC curve from the diagonal 
line indicates the model’s efficacy in discriminating the classes, which occurs in the 
high AUC-ROC situation, resulting in the arch curve. The range of AUC-ROC is 
between 0 to 1. Generally, an AUC-ROC of 1 ideally distinguishes between negative 
and positive classes. If the value is 0, the model predicts positive classes as negative 
and vice-versa (Madhuri, 2022). 

As a note, it is the choice of the individual to pick up the relevant indicator 
according to their requirements. 

Numerical problem 2.3. Two situations exist in water distribution networks (WDN): 
leak and no-leak. During observation by the field engineers, 12 leaks and 16 no-leaks 
were observed. Later, they used one of the algorithms to simulate these types of leaks. 
The algorithm identified only 9 leaks (TP), 12 no-leaks (TN), 4 no-leaks as leaks 
(FP), and 3 leaks as no-leaks (FN). Plot a confusion matrix for the given data. Analyze 
the problem with standard classification indicators. 

Solution: 

Confusion matrix for TP = 9, TN = 12, FP  = 4, FN = 3 is presented as Fig. 2.4 

TPR = TP 

TP + FN 
= 

9 

9 + 3 
= 0.75 

FPR = FP 

TN + FP 
= 4 

12 + 4 
= 0.25 

TNR = TN 

TP + FP 
= 12 

9 + 4 
= 0.923 

FNR = FN 

TP + FN 
= 

3 

9 + 3 
= 0.25

Fig. 2.4 Confusion matrix for the given numerical problem 
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Precision = TP 

TP + FP 
= 9 

9 + 4 
= 0.69231 

F-measure = 
2 × TPR × P 

TPR + P 
= 

2 × 0.75 × 0.69231 
0.75 + 0.69231

= 0.72 

Accuracy = TP + TN 
TP + TN + FP + FN 

= 9 + 12 
9 + 12 + 4 + 3 

= 0.75 

Error = 1 − 0.75 = 0.25 

Numerical problem 2.4. Two scenarios existed in students’ performance in academic 
institutions: pass or fail. During analysis by the student welfare division, it was noted 
that 22 students passed and 20 failed. The official who is monitoring the process used 
a simulation algorithm. It identified 14 (TP), 14 (TN), 6 (FP), and 8 (FN). Draw a 
confusion matrix for the given data. Compute Precision, Specificity, F-measure, and 
Accuracy. 

Solution: 

Confusion matrix for TP = 14, TN = 14, FP = 6, FN = 8 is presented as Fig. 2.5 

Precision = TP 

TP + FP 
= 14 

14 + 6 
= 0.7 

FPR = FP 

TN + FP 
= 6 

14 + 6 
= 0.3

Fig. 2.5 Confusion matrix for the given numerical problem 
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Table 2.5 Data of FPR and 
TPR for various thresholds Dataset FPR TPR 

1 0 0 

2 0 0.3 

3 0 0.5 

4 0 0.7 

5 0.3 0.7 

6 0.5 0.7 

7 0.5 0.9 

8 0.7 0.9 

9 0.7 1 

10 0.9 1 

11 1 1 

TPR = TP 

TP + FN 
= 14 

14 + 8 
= 0.63636 

F-measure = 
2 × TPR × P 

TPR + P 
= 

2 x  0.63636 x 0.7 

0.63636 + 0.7 
= 0.6667 

Accuracy = TP + TN 
TP + TN + FP + FN 

= 14 + 14 
14 + 14 + 6 + 8 

= 0.6667 

Numerical problem 2.5. Table 2.5 consists of FPR and TPR obtained for various 
thresholds to predict the thermophysical properties of hybrid nanofluids. Draw the 
AUC-ROC curve and compute the indicator. 

Solution: Refer to Fig. 2.6

AUC-ROC value = 0.7 × 0.5 + 0.9 × 0.2 + 1 × 0.3 = 0.83 [accumulation of 
individual areas yields AUC-ROC value]. 

Representative Software for the Computation of Indicators 

Agricultural and Meteorological software (https://agrimetsoft.com/calculators/) 
facilitates the calculation of various indicators. 

Revision Questions and Exercise Problems

2.1 Why should simulated and observed be compared? 
2.2 What is the role of indicators in modelling? Mention six indicators relevant to 

engineering with mathematical expressions and units. 
2.3 What is TP, TN, FP, and FN? What is their purpose in modelling? What are 

the minimum and maximum values that are possible for these indicators? 
2.4 What are Type 1 and Type 2 errors? 
2.5 Discuss salient features of the AUC-ROC curve.

https://agrimetsoft.com/calculators/
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Fig. 2.6 AUC-ROC curve

2.6 What is the ideal value of the AUC-ROC curve? 
2.7 Can you differentiate between accuracy and the AUC-ROC curve? Which do 

you prefer and why? 
2.8 Information on the observed and simulated number of vehicles travelling on 

a highway for days 1–10 for a specific duration is as follows. 
Observed number of vehicles: 130, 110, 80, 130, 150, 120, 110, 120, 120, 60 
Simulated number of vehicles: 150, 80, 90, 100, 120, 130, 90, 140, 170, 40 
Compute KGE, NSE, FSS and TSS. Draw the inferences from the obtained 
values. 

2.9 The problem is related to Computer Numerical Control (CNC) machines, 
where the number of metallic sheets handled for four consecutive hours is 20, 
35, 40, and 65. However, the machine is expected to handle 18, 40, 35, and 70 
metallic sheets as per norms. Analyze Loss Function-based indicators. 

2.10 The problem is related to the electronics engineering domain, where several 
smoke detection sensors were developed. Compute Precision and Accuracy 
for TP = 10, TN = 320, FP = 20, and FN = 50. Make relevant inferences. 

2.11 Table 2.6 contains FPR and TPR obtained for various thresholds in sorption-
enhanced biomass chemical looping gasification. Draw the AUC-ROC curve 
and compute the related value.
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Table 2.6 Data of FPR and 
TPR for various thresholds Dataset FPR TPR 

1 0 0 

2 0 0.35 

3 0 0.45 

4 0 0.55 

5 0.35 0.75 

6 0.55 0.80 

7 0.6 0.85 

8 0.7 0.9 

9 0.8 1 

10 0.85 1 

11 1 1 

Advanced Review Questions 

2.12 Can you develop indicators other than those mentioned in this chapter? If so, 
what will be the advantages of the proposed indicators over the existing ones? 

2.13 Do you think weights are to be assigned for the indicators? Justify your answer! 
2.14 Do you have any challenges while computing the AUC-ROC value? If yes, 

what are they? 
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Chapter 3 
Classical Machine Learning Algorithms 

3.1 Introduction 

The present chapter is a blend of classically familiar algorithms, namely, Artificial 
Neural Networks (ANN), Wavelet Neural Networks (WNN), Support Vector Regres-
sion (SVR), Extreme Learning Machine (ELM), Logistic Regression (LR), and K-
Nearest Neighbour (KNN). Before proceeding to the details of these algorithms, an 
important topic, the activation function, is briefly discussed. 

Note: Given input and output values are considered to be normalized in all the 
numerical problems discussed here and in other chapters. In addition, a representative 
situation for connecting the problem to the real-world scenario was provided. 

3.2 Activation Function 

The activation function estimate output from the given input (Fig. 3.1). These can be 
developed or modified depending on the requirement. Figure 3.2 presents selected 
activation functions and their mathematical philosophy (Sharma, 2017).

3.3 Artificial Neural Networks 

ANN can develop a non-linear relation between inputs and outputs. Figure 3.3 
presents architecture. It comprises layers. Each layer receives output from the 
preceding layers, i.e., output from each layer contributes to the next layer. Here, 
Feed-Forward with Back-Propagation (FFBP)-based ANN is discussed briefly 
(Fig. 3.3).

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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Techniques in Engineering and Management, 
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Fig. 3.1 Weighted sum input to the neuron (or node), activation function, and the resulting output

FFBP has forward and backward phases (Rao, 2000). The forward phase is 
associated with transmitting inputs to the output layer via the hidden layer using 
the activation function. Contrarily, the error between simulated and observed is 
propagated proportionately to the preceding layers in the backward phase. The 
process can be stopped when there is no change in the error between successive 
epochs (or termination criterion as specified by the user). Weights established at this 
stage are considered optimal and used for further analysis. The weight adjustment 
process is as follows (Eq. 3.1):

�ωij(n) = −Lr × 
∂E 

∂ωij 
+ Mr × �ωij(n − 1) (3.1) 

where Mr and Lr are momentum and learning rates, respectively. �ωij(n − 1),
�ωij(n) are weight changes between nodes i and j in the course of (n − 1) and 
nepochs. The computation of updated weights is as follows (Eq. 3.2) 

ωij(new) = ωij(old) + �ωij (3.2) 

Further simplifying Eqs. 3.1 and 3.2, without momentum factor yields (Eq. 3.3), 

ωi 
jknew = ωi 

jkold + Lr × Ei+1 
k × xjk (3.3)
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Shape of activation function Mathematical 

philosophy 

The output is in the 

form of probability. S-

shaped is continuously 

differentiable; the 

range of the function 

is 0 to 1.  

A certain number of 

nodes only get 

activated, making it 

computationally more 

efficient; The range is 

0 to ∞. 

Simple function, 

which works with the 

concept of the 

threshold. Not capable 

of handling multi-class 

clustering problems. 

Most flexible; the 

range is -1 to 1.   

(a) 

(b) 

(c) 

(d) 

Fig. 3.2 Activation functions a Sigmoid b Rectified Linear Unit (ReLU) c Binary step function 
d and Hyperbolic Tangent and their mathematical philosophy
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Fig. 3.3 The representative architecture of ANN

where ωi 
jk is weight relating ith layer, jth node to the (i + 1)th layer, kth node; 

Ei+1 
k is the error of (i + 1)th layer, kth node; xjk is the input from ith layer, jth node 

to the (i + 1)th layer, kth node. 

Numerical problem 3.1. In a typical architecture, one input layer (with four inputs, 
namely, Dissolved solids, Electrical conductivity, Turbidity, and pH) and one hidden 
layer with one node exist. Input values are 0.2, 0.3, 0.4 and 0.5. Assume connection 
strengths between four inputs and the hidden layer as 0.4, 0.5, 0.6, and 0.7. Compute 
output from the hidden layer. Sigmoid activation function can be chosen. What may 
happen if the activation function is Hyperbolic Tangent? 

Solution: 

Weighted input to the hidden layer
∑4 

i=1 wixi = 0.2 × 0.4 + 0.3 × 0.5 + 0.4 × 
0.6 + 0.5 × 0.7 = 0.08 + 0.15 + 0.24 + 0.35 = 0.82 

Output from a hidden layer on the basis of Sigmoid function, f (x) = 1 
1+e− ∑

wx = 
1 

1+e−0.82 = 0.6942 
In the case of a Hyperbolic Tangent, output from the hidden layer, f (x) = 

e
∑

wx−e− ∑
wx 

e
∑

wx+e− ∑
wx = e0.82−e−0.82 

e0.82+e−0.82 = 2.2704 − 0.4404 
2.2704 + 0.4404 = 0.675
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Output based on the Hyperbolic Tangent activation function is slightly lower 
compared to Sigmoid. 

Numerical problem 3.2. Three inputs, current, sampling time, and temperature (A, 
B, C) with magnitudes 2, 4, and 6, produce an output X (state of health of battery) 
of 0.6. One hidden layer with two nodes, K and L, is suggested. Initial weights from 
input (A, B, C) to the K node are 0.1, 0.2, and 0.3; these values for the L node 
are 0.15, 0.25, and 0.35. Initial weights from hidden nodes K and L to output X 
are 0.4 and 0.45, respectively. The learning rate is 0.1. Use the Sigmoid activation 
function. Draw the architecture. Establish a relationship using FFBP-ANN and show 
the computations for one epoch. 

Solution: 

Figure 3.4 presents the architecture for the given problem. 
Input values x1, x2, x3 (Nodes A, B, C) are 2, 4, 6; Observed value OX is 0.6 
Activation function: Sigmoid f (x) = 1 

1+e−x 

Epoch 1: 

Weighted input to the K node of the hidden layer = ∑3 
i=1 ωixi = 0.1 × 2 + 0.2 × 

4 + 0.3 × 6 = 2.8 
Output from the K node of the hidden layer, OK = 1 

1+e−x = 1 
1+e−2.8 = 0.9427. 

Weighted input to the L node of the hidden layer= ∑3 
i=1 ωixi = 0.15 × 2 + 

0.25 × 4 + 0.35 × 6 = 3.4 
Output from the L node of the hidden layer, OL = 1 

1+e−x = 1 
1+e−3.4 = 0.9677 

Weighted input to the output layer X, from K and L nodes= 0.4 × 0.9427 + 0.45 × 
0.9677 = 0.8125

Fig. 3.4 The architecture of ANN for the given numerical problem 
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Predicted output P from the output layer X, PX = 1 
1+ e−x = 1 

1 + e−0.8125 = 0.6927 
Observed output OX = 0.6 
Error EX = OX − PX = 0.6 − 0.6927 = −0.0927 
The division of errors is Ej−1 = On(1 − On)

∑
ωnjEj [If j is X, j − 1 is K, L]  

Entrusting errors to elements in layer 2 

EK = OK × (1 − OK) × (ωKX × EX) 
= 0.9427 × (1−0.9427) × (0.4 × −0.0927) = −0.002003 

EL = OL × (1 − OL) × (ωLX × EX) 
= 0.9677 × (1−0.9677) × (0.45 × −0.0927) = −0.001304 

Weights are updated as per Eq. 3.3. Tables 3.1 and 3.2 comprise updated weights 
connecting nodes in layers 1 and 2 & 2 and 3, respectively. 

Numerical problem 3.3. The architecture is 5-4-1 (refer to Fig. 3.5). Five inputs 
(muscle strength, aerobic endurance, body mass index, speed, and flexibility) (A to 
E), with magnitudes 5, 6, 7, 8, and 9 affecting non-academic performance X, with the

Table 3.1 Updated weights connecting nodes in layers 1 and 2 

Updated weight for input to 
hidden nodes 

Equation for updating weights Updated weights 

AK ωAK.old + Lr × EK × x1 0.1 + 0.1 × (−0.002003) × 2 = 
0.0996 

BK ωBK.old + Lr × EK × x2 0.2 + 0.1 × (−0.002003) × 4 = 
0.1992 

CK ωCK.old + Lr × EK × x3 0.3 + 0.1 × (−0.002003) × 6 = 
0.2988 

AL ωAL.old + Lr × EL × x1 0.15 + 0.1 × (−0.001304) × 2 
= 0.1497 

BL ωBL.old + Lr × EL × x2 0.25 + 0.1 × (−0.001304) × 4 
= 0.2495 

CL ωCL.old + Lr × EL × x3 0.35 + 0.1 × (−0.001304) × 6 
= 0.3492 

Table 3.2 Updated weights connecting nodes in layers 2 and 3 

Updated weight for the 
hidden to output nodes 

Equation for updating weights Updated weights 

KX ωKX.old + Lr × EK × EX 0.4 + 0.1 × (−0.002003) × 
(−0.0927) = 0.4000188 

LX ωLX.old + Lr × EL × EX 0.45 + 0.1 × (−0.001304) × 
(−0.0927) = 0.450012 
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Fig. 3.5 The architecture of ANN for the given problem 

value of 1. Initial weights connecting input and hidden nodes are 0.1, whereas these 
are 0.2 for hidden nodes to output. The learning rate can be considered as 0.2. Use the 
Hyperbolic Tangent activation function. Establish a relationship using FFBP-ANN 
and show the computations for one epoch. 

Solution: 

Input values x1, x2, x3,x4, x5 (Nodes A, B, C, D, E) are 5, 6, 7, 8, 9; Observed value 
OX is 1. 

Hyperbolic tangent function f (x) = ex − e−x 

ex + e−x 

Epoch 1: 

Weighted input to the hidden layer
∑5 

i=1 ωixi = 0.1 × 5 + 0.1 × 6 + 0.1 × 7 + 
0.1 × 8 + 0.1 × 9 = 3.5 [K, L, M, N nodes in the hidden layer] 
Output from each node [K, L, M, N] in the hidden layer OK = OL = OM = ON =
ex−e − x 

ex+e − x = e3.5−e−3.5 

e3.5+e−3.5 = 0.9982 
Input to the output layer = 0.2 × 0.9982 × 4 = 0.79856 [Here 4 represents four 
hidden nodes that are connected to the output layer] 
Predicted output from the output layer X , PX = ex − e−x 

ex+e−x = e0.79856−e−0.79856 

e0.79856+e−0.79856 = 0.6632
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Observed output OX = 1 
Error EX = OX − PX = 1 − 0.6632 = 0.3368 
The division of errors is Ej−1 = On(1 − On)

∑
ωnjEj [If j is X, j − 1 is K, L, M, N]  

Entrusting errors to elements in layer 2 

EK = OK × (1 − OK) × (ωKX × EX) 
= 0.9982 × (1−0.9982) × 0.2 × 0.3368 = 0.000121 

EL = OL × (1 − OL) × (ωLX × EX) 
= 0.9982 × (1−0.9982) × 0.2 × 0.3368 = 0.000121 

EM = OM × (1 − OM) × (ωMX × EX). 
= 0.9982 × (1 − 0.9982) × 0.2 × 0.3368 = 0.000121 

EN = ON × (1 − ON) × (ωNX × EX) 
= 0.9982 × (1−0.9982) × 0.2 × 0.3368 = 0.000121 

Weights are updated as per Eq. 3.3. Tables 3.3 and 3.4 comprise updated weights 
connecting nodes in layers 1 and 2 & 2 and 3, respectively. 

Table 3.3 Updated weights connecting nodes in layers 1 and 2 

Updated weight for input to hidden nodes Updated weights 

AK = AL = AM = AN 0.1 + 0.2 × 0.000121 × 5 = 0.100121 
BK = BL = BM = BN 0.1 + 0.2 × 0.000121 × 6 = 0.100145 
CK = CL = CM = CN 0.1 + 0.2 × 0.000121 × 7 = 0.100169 
DK = DL = DM = DN 0.1 + 0.2 × 0.000121 × 8 = 0.100194 
EK = EL = EM = EN 0.1 + 0.2 × 0.000121 × 9 = 0.100218 

Table 3.4 Updated weights connecting nodes in layers 2 and 3 

Updated weight for the hidden to output nodes Updated weights 

KX = LX = MX = NX 0.2 + 0.2 × 0.000121 × 0.3368= 0.200008
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3.4 Wavelet Neural Networks 

The principle behind wavelet transform (Guo et al., 2022; Vogl et al., 2022) is to  
get hold of sufficient insights from primary data and disintegrate the same into 
further narration. Dilation and translation are essential features in wavelet disin-
tegration. Wavelet transforms are dealt with low and high-pass filters. A standard 
WNN architecture is presented in Fig. 3.6. 

Workflow is as follows: Primary data is established in the input layer, whereas 
the hidden layer comprises wavelons (or hidden units). The primary input data in 
the hidden layers are metamorphosed into dilation and translation mother wavelets. 
Lastly, approximations of the observed values are computed in the output layer 
(Fig. 3.6). Equation (3.4) denotes the single hidden layer process of feed-forward 
WNN, which acts like a linear model when no hidden units exist (Vogeti et al., 2022). 

ysim = ωα + 
α∑

j=1 

ωjM
(
zij

) + 
n∑

i=1 

ωixi (3.4) 

xi = Input value, ysim = Simulated output values; α = Number of wavelons; 
ωα = Constant ; ωi and ωj =weights of input and hidden network; n = Number of 
inputs; zij =Normalized input to wavelon; M

(
zij

) =Intermediate outputs, which are

Fig. 3.6 Architecture of WNN 
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dependent on the selected mother wavelet. They are the crucial components of WNN, 
which decide the dilation and translation pattern within the Wavelons in the hidden 
layer. Mathematical expressions of some of the mother wavelets are (Eqs. 3.5–3.8): 

Gaussian M
(
zij

) = zij · e 
z2 ij

/

2 (3.5) 

Mexican hat M
(
zij

) =
(
1 − z2 ij

)
· e z

2 
ij
/

2 (3.6) 

Morlet M
(
zij

) = e
−z2 ij

/

2. cos 5 zij (3.7) 

Shannon M
(
zij

) = sin c(t). e−2π it (3.8) 

The workflow of WNN is discussed below: 

• Identifying the number of hidden units, type of mother wavelet, dilation, and 
translation and related parameters 

• Random assignment of initial network weights 
• Computation of ysim and estimating the error 
• Updating the weights (and associated parameters) till the chosen termination 

criteria are fulfilled. 

Most of the parameters mentioned above influence network weights significantly, 
except, Dropout. It purposefully discards wavelons from the network to improve 
further. 
Epochs can be continued till a tolerance error is achieved with adequately assigned 
learning and momentum rates. Equation 3.9 represents the total error (Eω), i.e., the 
difference between observed output (yobs) and the ysim, weighted by the wavelet 
function (Z) for each training example. 

Eω =
∑

(yobs − ysim) × �(Z) (3.9) 

The error serves as a performance indicator for the network and is typically mini-
mized during training. Repeat the analysis using the new weights and modify the 
mother wavelets until the observed and simulated values are closer. Once reasonable 
simulated values are obtained by adjusting the weights and mother wavelets further, 
the Eω is back-propagated by using the chain rule till tolerance error is achieved 
(Yang et al., 2009). 

Numerical problem 3.4. Using WNN, establish the relationship between stress 
(input x) and strain (output y). Datasets are presented in Table 3.5.
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Table 3.5 Information about 
datasets Dataset x y 

1 5 0.05 

2 9 0.03 

3 19 0.2 

4 4 0.5 

5 21 0.22 

Solution: 

Step 1: Selection of the number of hidden units, Activation functions (here it is 
Mother wavelet) 
Number of input variables i = 1; 
Number of output variables k = 1; 
Number of training records P = 5; 
The number of hidden units is n = 1 (considered only one hidden unit), and the type 
of mother wavelet function considered is Gaussian wavelet. 

Step 2: Assigning ωω1 with a matrix size of  n × i to multiply with input. 
ωω1 is assigned based on random weight allocation and matrix size n × i. In this  
numerical, the matrix size is 1 × 1 
ωω1 = [0.35] (Say the weights are randomly assigned) 
Step 3: Computation of weighted input 

Weighted input = I = 0.35 × x 
Step 4: Assigning translation (b) and dilation parameter (a) 

b = 0.5(Mi + Ni) 

a = 0.2(Mi − Ni) 

where, 

Mi = Maximum of the input x = 21 

Ni = Minimum of the input x = 4 

b = 0.5(Mi + Ni) = 0.5(21 + 4) = 12.5 

a = 0.2(Mi − Ni) = 0.2(21 − 4) = 3.4
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Step 5: Computation of Z value (u-term) 

Z value = 
I − b 
a 

= 
I − 12.5 

3.4 

Step 6: Computation of hidden unit value or Ψ value

�(Z) = e−z2/2 

Step 7: Multiplication of weight matrix ωω2 of size n × k with a hidden layer. 
ωω2 is assigned based on random weight allocation, and the matrix size is n × k. In  
this numerical, the matrix size is 1 × 1 

ωω2 = [0.45] (Say the weights are randomly assigned) 

Step 8: Computation of simulated values and resulting anomalies (Table 3.6) 

ysim = ωω2 �(Z) 

Average total error =
∑n 

i=1 Ei 

n
= 0.1476 

Eω =
∑

(yobs − ysim) × �(Z) 

= (0.047) × (0.0068) + (0.02) × (0.0228) + (0.097) 
× (0.2278) + (0.498) × (0.0049) + (0.076) × (0.3198) 

= 0.04962 

Numerical problem 3.5. Establish the relationship between Depth of water, Velocity 
of flow (x1 & x2), and Flood damage (y) using WNN. Information is presented in 
Table 3.7.

Table 3.6 Computation of simulated strains (y) and anomalies 

x Weighted input = 
I = 0.35 × x 

Z value = 
I−b 
a

�(Z) = 
e−z2/2 

ysim = 
ωω2× �(Z) 

yobs Ei = 
yobs − ysim 

5 1.75 −3.16 0.0068 0.003 0.05 0.047 

9 3.15 −2.75 0.0228 0.01 0.03 0.02 

19 6.65 −1.72 0.2278 0.103 0.2 0.097 

4 1.4 −3.26 0.0049 0.0022 0.5 0.498 

21 7.35 −1.51 0.3198 0.144 0.22 0.076 
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Table 3.7 Information about 
datasets Dataset x1 x2 y 

1 1 2 0.5 

2 4 3 0.7 

3 7 4 0.1 

4 9 8 0.4 

5 11 9 0.6 

Solution: 

Step 1: Selection of the number of hidden units, Activation functions (here it is 
Mother Wavelet) 
Number of input variables i = 2; 
Number of output variables k = 1; 
Number of training records P = 5; 
Number of hidden units, n = 1 (considered only one hidden unit), and the type of 
the mother wavelet function considered is Mexican Hat. 

Step 2: Assigning ωω1 with a matrix size of  n × i to multiply with input. 
ωω1 is assigned based on random weight allocation, and the matrix size n × i. In this 
numerical, the matrix size is 1 × 2 

ωω1 = [0.3 0.4] (Say the weights are randomly assigned) 
Step 3: Computation of weighted input. 
Weighted input = I= 0.3 × x1 + 0.4 × x2 
Step 4: Assigning translation (b) and dilation parameter (a) 

b = 0.5(Mi + Ni) 

a = 0.2(Mi − Ni) 

where, 

Mi = Maximum of the input xi = 11 

Ni = Minimum of the input xi = 1 

b = 0.5(Mi + Ni) = 0.5(11 + 1) = 6 

a = 0.2(Mi − Ni) = 0.2(11 − 1) = 2
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Step 5: Computation of Z value (u-term) 

Z value = 
I − b 
a

= 
I − 6 
2 

Step 6: Computation of hidden unit value or Ψ value

�(Z) = (
1 − z2

)
.e−z2/2 

Step 7: Multiplication of weight matrix ωω2 of size n × k with a hidden layer. 
ωω2 is assigned based on random weight allocation, and the matrix size n × k. In  
this numerical, the matrix size is 1 × 1 
ωω2 = [0.4] (Say the weights are randomly assigned) 

Step 8: Computation of simulated values and resulting errors (Table 3.8) 

ysim = ωω2�(Z) 

Average total error =
∑n 

i=1 Ei 

n
= 0.552 

Eω =
∑

(yobs − ysim) × �(Z) 

= (0.5995) × (−0.2487) + (0.8773) × (−0.4433) + (0.1666) 
× (−0.1665) + (0.7985) × (−0.9963) + (0.3117) × (0.7207) 

= −  1.1366

Table 3.8 Computation of simulated flood damage (y) and error 

x1 x2 Weighted input 
= I =  0.3 × x1 + 
0.4 × x2 

Z value 

= I−b 
a

�(Z) =
(
1 − z2

)
.e−z2/2 

ysim = 
ωω2 × �(Z) 

yobs Ei = 
yobs − 
ysim 

1 2 1.1 −2.45 −0.2487 −0.0995 0.5 0.5995 

4 3 2.4 −1.8 −0.4433 −0.1773 0.7 0.8773 

7 4 3.7 −1.15 −0.1665 −0.0666 0.1 0.1666 

9 8 5.9 −0.05 −0.9963 −0.3985 0.4 0.7985 

11 9 6.9 0.45 0.7207 0.28828 0.6 0.3117 
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3.5 Support Vector Regression 

The primary focus of SVR is to determine the best hyperplane that suits most datasets 
by maximizing the error margin (Granata et al., 2016; Raghavendra & Deka, 2014; 
Vapnik, 1998) (Fig. 3.7). It has a robust theoretical framework that incorporates prin-
ciples of convex optimization, ML, statistics, and mathematical analysis. These also 
have good generalization performance, strong adaptability, and the ability to handle 
non-linearity and noisy datasets compared to traditional algorithms (Madhuri et al., 
2021; Mohammadi, 2021; Sujay & Paresh, 2014)). Mathematically, a hyperplane 
can be denoted (Eq. 3.10): 

ωT x + b = 0 (3.10) 

where ωT and b are weight vector and bias. 
Equation 3.11 defines the decision boundary of the hyperplane, ωTx + b = 0. If  

ωTx + b > 0, then the datasets related to overestimated vectors; if ωTx + b < 0, the  
dataset related to underestimated vectors. The remaining vectors that fall within the 
error margin are termed support vectors. The optimal hyperplane can be identified by 
satisfying the constraint of maximizing the error margin by minimizing the objective 
function (Eq. 3.11)

Fig. 3.7 Hyperplane of SVR 
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Z = 
1 

2 
.|ω|2 (3.11) 

subject to yi
(
ωTxi + b

) ≥ 1 for  i = 1, 2, ..., n, where |ω|2 is the squared normal-
ized weight vector ω; xi and yi are ith datasets in the feature space. The constraint 
yi

(
ωTxi + b

) ≥ 1 ensures the margin is at least 1 for all datasets. The optimization 
problem can be worked out utilizing the Lagrange multiplier approach, and the dual 
form of the problem is defined as the (Eq. 3.12) 

Maximize L = sum(αi) −
(
1 

2

)

× sum
(
sum

(
αi.αj · yi · yj · xi · xj

))
(3.12) 

subject to αi ≥ 0 and sum (αi, yi) = 0 
where αi is the Lagrange multiplier for the ith constraint. The decision boundary 

can be found using Eq. 3.13. 

f (x) = sign
(
sum

(
αi · yi · xi · xj

) + b
)

(3.13) 

It can be extended to non-linearly separable datasets using the kernel trick. 
Some kernels are the Radial Basis Function (RBF), Sigmoid, and polynomial. The 
mathematical formula for the RBF kernel is (Eq. 3.14): 

K
(
xi, xj

) = e 
−|xi −xj|2 

2σ2 (3.14) 

where σ is a hyperparameter that controls the width of the RBF function, the param-
eters governing SVR are the kernel, shape, regularization parameters, and dropout. 
The loss function can be computed between observed and predicted values. Local 
gradients can be updated until the termination criteria are satisfied (Madhuri, 2022). 

Numerical problem 3.6. Using SVR, relate rainfall (x) and drought index (y). 
Datasets are presented in Table 3.9. Compute output value for input of 6. Assume 
suitable data, if any. 

Table 3.9 Information about 
input and output Dataset x y 

1 2 7 

2 5 37 

3 4 17
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Solution: 

The given problem is solved in a stepwise manner, as presented below 

Step 1: Calculation of kernel matrix K by selecting the appropriate kernel function 

The computation of kernel elements (kij) depends on the chosen kernel function. 
Here, RBF is selected as the kernel; thus, the elements of the kernel present in the 

matrix are computed based on the RBF expression as kij = e−ϒ‖xi−xj‖2 

. Here, ϒ is 
a positive constant controlling the spread of a kernel chosen as 0.1 in this problem. 
The choice of 0.1 as a default value for ϒ is often a reasonable starting point for a 
wide range of datasets. It is neither too small nor too large, allowing for a balance 
between capturing local patterns and generalizing well to unseen datasets. 

x1 = 2, x2 = 5, and x3 = 4 

Kernel Elements can be represented as follows: 

x1 x2 x3 

x1 k11 k12 k13 

x2 k21 k22 k23 

x3 k31 k32 k33 

Calculations of the kernel elements based on the input elements are presented as 
follows (Table 3.10) 

k11 = e(−ϒ‖x1−x1‖2 ) = e(−ϒ‖2−2‖2 ) = e0 = 1 

k12 = e(−ϒ‖x1−x2‖2 ) = e(−ϒ‖2−5‖2 ) = e−0.1×9 = 0.4065 

k13 = e(−ϒ‖x1−x3‖2 ) = e(−ϒ‖2−4‖2 ) = e−0.1×4 = 0.6703 

k21 = e(−ϒ‖x2−x1‖2 ) = e(−ϒ‖5−2‖2 ) = e−0.1×9 = 0.4065 

k22 = e(−ϒ‖x2−x2‖2 ) = e(−ϒ‖5−5‖2 ) = e0 = 1 

k23 = e(−ϒ‖x2−x3‖2 ) = e(−ϒ‖5−4‖2 ) = e−0.1×1 = 0.9048 

k31 = e(−ϒ‖x3−x1‖2 ) = e(−ϒ‖4−2‖2 ) = e−0.1×4 = 0.6703 

k32 = e(−ϒ‖x3−x2‖2 ) = e(−ϒ‖4−5‖2 ) = e−0.1×1 = 0.9048 

k33 = e(−ϒ‖x3−x3‖2 ) = e(−ϒ‖4−4‖2 ) = e0 = 1

Step 2: Computation of contraction coefficient (α) based on observed variables and 
the obtained kernel matrix (K), which is as follows: 

The output y is the function of kernel matrix (K) and contraction coefficient (α) 

y = K · α
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Table 3.10 Kernel matrix 
K = x1 x2 x3 

x1 1 0.4065 0.6703 

x2 0.4065 1 0.9048 

x3 0.6703 0.9048 1

(or) 

α = (K)−1 · y 

where, y = 

⎡ 

⎣ 
7 
37 
17 

⎤ 

⎦ 

In this numerical problem, the Gauss-Jordan elimination procedure is used. The 
augmented matrix of the K is as follows = 

1 0.4065 0.6703 1 0 0 

0.4065 1 0.9048 0 1 0 

0.6703 0.9048 1 0 0 1 

Sequentially pivot the diagonal elements for the first three columns and apply 
row operations such that diagonal elements are one and the remaining elements are 
zeroes. The row operations applied to the matrix are as follows: 

R2 = R2 − 0.4065R1; R3 = R3 − 0.6703R1; R2 = 1.1979R2; R3 = R3 − 0.6703R1; 
R3 = 13.9435R3;R1 = R1 − 0.3623 R3 and R2 = R2 − 0.7575R3. 

The inverse matrix computed from Gauss-Jordan elimination is as follows: 
(K)−1 = 

3.029 3.3405 −5.0528 

3.3405 9.1987 −10.5621 

−5.0528 −10.5621 13.9435 

(K)−1 · y = α
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(K)-1 y α 
3.029 3.3405 −5.0528 7 = 58.904 

3.3405 9.1987 −10.5621 37 184.18 

−5.0528 –10.5621 13.9435 17 −189.128 

C11 = 3.029 × 7 + 3.3405 × 37 + (−5.0528) × 17 = 58.904 
C21 = 3.3405 × 7 + 9.1987 × 37 + (−10.5621) × 17 = 184.18 
C31 = (−5.0528) × 7 + (−10.5621) × 37 + 13.9435 × 17 = −189.128 

Step 3: Computation of bias (b) 

bk = yk −
∑

αikpj ; p = 1 

b1 = y1 −
∑

αik1j 

b1 = 7 − [(58.904 × 1) + (184.18 × 0.4065) + (−189.128 × 0.6703)] 
b1 = −  0.0006716 

bk = yk −
∑

αikpj ; p = 2 

b2 = y2 −
∑

αik2j 

b2 = 37 − [(58.904 × 0.4065) + (184.18 × 1) + (−189.128 × 0.9048)] 
b2 = −  0.0014616 

bk = yk −
∑

αikpj; p = 3 

b3 = y3 −
∑

αik3j 

b3 = 17 − [(58.904 × 0.6703) + (184.18 × 0.9048) + (−189.128 × 1)] 
b3 = −  0.0014152 

b = 
b1 + b2 + b3 

3 

b = 
(−0.0006716) + (−0.0014616) + (−0.0014152) 

3 
b = −0.0011828 

Step 4: Computation of simulated values using density function f (xi) 
Density function f (xi) = ∑

αmkij + b (m= {1, 2, 3}, j = {1, 2, 3})
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For i = 1, f (x1) = ∑
αmk1j + b = α1k11 + α2k12 + α3k13 + b 

f (x1) = (58.904 × 1) + (184.18 × 0.4065) + (−189.128 × 0.6703) + (−0.0011828) 
f (x1) = 6.99948 

For i = 2, f (x2) = ∑
αmk2j + b = α1k21 + α2k22 + α3k23 + b 

f (x2) = (58.904 × 0.4065) + (184.18 × 1) + (−189.128 × 0.9048) + (−0.0011828) 
f (x2) = 37.0002 

For i = 3, f (x3) = ∑
αmk3j + b = α1k31 + α2k32 + α3k33 + b 

f (x3) = (58.904 × 0.6703) + (184.18 × 0.9048) + (−189.128 × 1) + (−0.0011828) 
f (x3) = 16.8482. 

Step 5: Computation of loss function between observed and simulated values 
(Table 3.11). 

The simulated values have a good agreement with the observed values; thus, 
in this numerical, the density function can be used for predicting the new input 
values (xn) as presented in Step 6. If the simulated values deviate significantly 
from the observed values, the kernel functions can be changed (for example, Linear, 
Polynomial, Gaussian, Logistic). 

Step 6: Computation of kernel and output using density function f (xi) for the new 
input value xn 

The kernel calculated for input, xn = 6 are presented as follows: 

k(xi, xn) = e−ϒ‖xi−xj‖2 

For i = 1, k(x1, xn) = e−ϒ‖x1−xn‖2 = e−0.1‖2−6‖2 = 0.2019 
For i = 2 , k(x2, xn) = e−ϒ ||x2−xn||2 = e−0.1||5−6||2 = 0.9048. 
For i = 3 , k(x3, xn) = e−ϒ ||x3−xn||2 = e−0.1||4−6||2 = 0.6703.

Table 3.11 Observed, 
simulated, and loss function 
values 

Dataset Observed values 
(yk ) 

Simulated values 
f (xn) 

Loss function 
L = yk − f (xn) 

1 7 6.99948 0.00052 

2 37 37.0002 −0.0002 

3 17 16.8482 0.1518 
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Now, applying the updated kernel elements in the density function, f (xn) =∑
αiknj + b 

f (xn) = (58.904 × 0.2019) + (184.18 × 0.9048) + (−189.128 × 0.6703) + ( − 0.0011828) 
= 51.765. 

For the new value (xn), output value predicted using the density function is f (xn) = 
51.765. 

Numerical problem 3.7. Relate wheel load (x) and pavement failure (y) using the 
SVR for the datasets presented in Table 3.12. What is the output for an input value 
of 6? 

Solution: 

The given problem is solved in a stepwise manner, as presented below: 
Step 1: Calculation of kernel matrix K by selecting the appropriate kernel function 

The computation of kernel elements (kij) depends on the chosen kernel function. 
Here, RBF is selected as the kernel; thus, the elements of the kernel present in the 

matrix are computed based on the RBF expression as kij = e−ϒ‖xi−xj‖2 

. Here, ϒ was 
chosen as 0.1 in this problem. x1 = 3, x2 = 7, x3 = 5, and x4 = 14. 
Kernel Elements 

x1 x2 x3 x4 

x1 k11 k12 k13 k14 

x2 k21 k22 k23 k24 

x3 k31 k32 k33 k34 

x4 k41 k41 k43 k44 

Calculation of the kernel elements based on the input elements are as follows: 
(Table 3.13)

k11 = e(−γ ‖x1−x1‖2 ) = e(−γ ‖3−3‖2 ) = e0 = 1 

k12 = e(−ϒ‖x1−x2‖2 ) = e(−ϒ‖3−7‖2 ) = e−0.1×16 = 0.2019. 

k13 = e(−ϒ‖x1−x3‖2 ) = e(−ϒ‖3−5‖2 ) = e−0.1×4 = 0.6703.

Table 3.12 Information 
about input and output Dataset x y 

1 3 1.2 

2 7 3 

3 5 1.6 

4 14 6.5 
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k14 = e(−γ‖x1−x4‖2 ) = e(−γ‖3−14‖2 ) = e(−0.1×121) = 0

k21 = e(−ϒ‖x2−x1‖2 ) = e(−ϒ‖7−3‖2 ) = e−0.1×16 = 0.2019. 

k22 = e(−ϒ‖x2−x2‖2 ) = e(−ϒ‖7−7‖2 ) = e0 = 1. 

k23 = e(−ϒ‖x2−x3‖2 ) = e(−ϒ‖7−5‖2 ) = e−0.1×4 = 0.6703. 

k24 = e(−ϒ‖x2−x4‖2 ) = e(−ϒ‖7−14‖2 ) = e−0.1×49 = 0.00745 

k31 = e(−ϒ‖x3−x1‖2 ) = e(−ϒ‖5−3‖2 )e−0.1×4 = 0.6703. 

k32 = e(−ϒ‖x3−x2‖2 ) = e(−ϒ‖5−7‖2 ) = e−0.1×4 = 0.6703. 

k33 = e(−ϒ‖x3−x3‖2 ) = e(−ϒ‖5−5‖2 ) = e0 = 1. 

k34 = e(−ϒ‖x3−x4‖2 ) = e(−ϒ‖5−14‖2 ) = e−0.1×81 = 0.0003. 

k41 = e(−ϒ‖x4−x1‖2 ) = e(−ϒ‖14−3‖2 ) = e−0.1×121 = 0. 

k42 = e(−ϒ‖x4−x2‖2 ) = e(−ϒ‖14−7‖2 ) = e−0.1×49 = 0.00745. 

k43 = e(−ϒ‖x4−x3‖2 ) = e(−ϒ‖14−5‖2 ) = e−0.1×81 = 0.0003. 

k44 = e(−ϒ‖x4−x4‖2 ) = e(−ϒ‖14−14‖2 ) = e0 = 1. 

Step 2: Computation of contraction coefficient (α) based on observed variables and 
kernel matrix (K) obtained 

The output y is the function of kernel matrix (K) and contraction coefficient (α) 

y = K · α 

or 
α = (K)−1 · y

Table 3.13 Kernel matrix K = 
x1 x2 x3 x4 

x1 1 0.2019 0.6703 0 

x2 0.2019 1 0.6703 0.00745 

x3 0.6703 0.6703 1 0.0003 

x4 0 0.00745 0 1 
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where, y = 

⎡ 

⎢ 
⎢ 
⎣ 

1.2 
3 
1.6 
6.5 

⎤ 

⎥ 
⎥ 
⎦ 

The augmented matrix of the K is presented as follows. 

1 0.2019 0.6703 0 1 0 0 0 0 

0.2019 1 0.6703 0.00745 0 1 0 0 0 

0.6703 0.6703 1 0.0003 0 0 1 0 0 

0 0.00745 0 1 0 0 0 1 0 

Sequentially pivot the diagonal elements for the first five columns and apply row 
operations such that diagonal elements are one and the remaining elements are zeroes. 
The row operations applied to the matrix are as follows (as part of the Gauss-Jordan 
Elimination procedure) 

R2 = R2 − 0.2019R1; R3 = R3 − 0.6703R1; R2 = 1.0425R2; R3 = R3 − 0.534966R2; 
R4 = R4 − 0.00745R2; R3 = 3.9628R3; R4 = R4 + 0.004155R3; R4 = 1.00012R4; 
R3 = R3 + 0.015276R4; R2 = R2 − 0.007767R4; R2 = R2 − 0.5577R3; R1 = R1− 
0.6703R3; R1 = R1 − 0.2019R2. 

The inverse matrix computed from Gauss-Jordan elimination is as follows: 
(K)−1 = 

2.2751 1.0222 −2.2102 −0.00695 

1.02219 2.2753 −2.2103 −0.01629 

2.2102 −2.2103 3.9630 0.01528 

−0.007615 −0.01695 0.01646 1.0001 

α = 

⎡ 

⎢ 
⎢ 
⎣ 

2.2152 
4.4102 
2.4615 
6.467 

⎤ 

⎥ 
⎥ 
⎦ 

C11 = 2.2751 × 1.2 + 1.0222 × 3 + (−2.2102) × 1.6 + (−0.00695) × 6.5 = 2.2152. 
C21 = 1.02219 × 1.2 + 2.2753 × 3 + (−2.2103) × 1.6 + (−0.01629) × 6.5 = 4.4102. 
C31 = 2.2102 × 1.2 + (−2.2103) × 3 + 3.9630 × 1.6 + 0.01528 × 6.5 = 2.4615. 
C41 = (−0.007615) × 1.2 + (−0.01695) × 3 + 0.01646 × 1.6 + 1.0001 × 6.5 = 6.467. 

Step 3: Computation of Bias (b)
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bk = yk −
∑

αikpj, p = 1 

b1 = y1 −
∑

αik1j 

b1 = 1.2 − [(2.2152 × 1) + (4.4102 × 0.2019) + (2.4615 × 0.6703) + (6.467 × 0)] 
b1 = −3.555 

bk = yk −
∑

αikpj; p = 2 

b2 = y2 −
∑

αik2j 

b2 = 3 − [(2.2152 × 0.2019) + (4.4102 × 1) + (2.4615 × 0.6703) + (6.467 × 0.00745)] 

b2 = −3.555 

bk = yk −
∑

αikpj; p = 3 

b3 = y3 −
∑

αik3j 

b3 = 1.6 − [(2.2152 × 0.6703) + (4.4102 × 0.6703) + (2.4615 × 1) + (6.467 × 0.0003)] 
b3 = −5.3044 

bk = yk −
∑

αikpj; p = 4 

b4 = y4 −
∑

αik4j 

b4 = 6.5 − [(2.2152 × 0) + (4.4102 × 0.00745) + (2.4615 × 0) + (6.467 × 1)] 
b4 = −0.000144 

b = 
b1 + b2 + b3 + b4 

4 

b = 
(−3.555) + (−3.555) + (−5.3044) + (−0.000144) 

4 

b = −3.1036 

Step 4: Computation of simulated values using Density Function f (xi) 

Density function f (xi) = ∑
αmkij + b(m = {1, 2, 3, 4}, j = {1, 2, 3, 4}) 

For i = 1, f (x1) = ∑
α1k1j + b = α1k11 + α2k12 + α3k13 + α4k14+ b 

f (x1) = (2.2152 × 1) + (4.4102 × 0.2019) + (2.4615 × 0.6703) + (6.647 × 0) + (−3.1036)
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f (x1) = 1.65. 

For i = 2, f (x2) = ∑
α2k2j + b = α1k21 + α2k22 + α3k23 + α4k24+ b 

f (x2) = (2.2152 × 0.2019) + (4.4102 × 1) + (2.4615 × 0.6703) + (6.647 × 0.00745) + (−3.1036) 
f (x2) = 3.4533 

For i = 3, f (x3) = ∑
α3k3j + b = α1k31 + α2k32 + α3k33 + α4k34+ b. 

f (x3) = (2.2152 × 0.6703) + (4.4102 × 0.6703) + (2.4615 × 1) + (6.647 × 0.0003) + (−3.1036) 
f (x3) = 3.8009. 

For i = 4, f (x4) = ∑
α4k4j + b = α1k41 + α2k42 + α3k43 + α4k44+ b. 

f (x4) = (2.2152 × 0) + (4.4102 × 0.00745) + (2.4615 × 0) + (6.647 × 1) + (−3.1036) 
f (x4) = 3.5762. 

Step 5: Computation of loss function between observed and simulated values 
(Table 3.14) 

The simulated values have a moderate agreement with the observed values and require 
further updation of the kernel functions, contraction coefficients, and biases until the 
deviation is minimized to the best possible extent. However, in this numerical, the 
density function is used to predict the new input values (xn) as presented in Step 6 
for demonstration purposes. 

Step 6: Computation of kernel and output using density function f (xi) for the new 
input value xn. 

The kernel calculated for xn = 6 are presented as follows: 

k(xi, xn) = e(−ϒ‖xi−xn‖2 ) 

For i = 1, k(x1, xn) = e−ϒ‖x1−x6‖2 = e−0.1‖3−6‖2 = 0.4065 
For i = 2, k(x2, xn) = e−ϒ‖x2−x6‖2 = e−0.1‖7−6‖2 = 0.9048 
For i = 3, k(x3, xn) = e−ϒ‖x3−x6‖2 = e−0.1‖5−6‖2 = 0.9048

Table 3.14 Observed, 
simulated, and loss function 
values 

Dataset Observed values 
(yk ) 

Simulated values 
f (xn) 

Loss function 
L = yk − f (xn) 

1 1.2 1.65 −0.45 

2 3 3.4533 −0.4533 

3 1.6 3.8009 −2.2009 

4 6.5 3.5762 2.9238 
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For i = 4, k(x4, xn) = e−ϒ‖x4−x6‖2 = e−0.1‖4−6‖2 = 0.00166. 
Now, applying the updated kernel elements in the density function, f (xn) =∑
αiknj + b 

f (xn) = (2.2152 × 0.4065) + (4.4102 × 0.9048) 
+ (2.4615 × 0.9048) + (6.467 × 0.00166) + (−3.1036) = 4.025 

For the new value (xn), output value predicted using the density function is f (xn) = 
4.025. 

3.6 Extreme Learning Machine 

ELM employs only a single-hidden layer in the feed-forward networks framework 
(Wang et al., 2022). Figure 3.8 presents the architecture. Weights connecting the 
input and hidden layer are randomly given. Similarly, biases in the hidden layer 
are randomly assigned. They are kept constant during the training procedure. The 
algorithm converges faster and is likely to reach a globally optimal solution than 
several traditional algorithms, as no iterative process is involved during the learning 
process (Huang et al., 2015). Here, only the basic version of ELM is presented.

The input layer is comprised of multiple nodes, each representing a data feature. 
The hidden layer is formed by multiplying the input values with a randomly generated 
weight matrix to create a linear combination. The output layer is a linear combination 
of the hidden layer with a weight matrix � (that connects the hidden and output 
layers). The training intends to estimate the �i . The mathematical formulation is as 
follows (Eq. 3.15): 

fL(x) = 
L∑

i=1

�i �i(X) = 
L∑

i=1

�i × �i
(
ωixj + bi

)
, j = 1, 2, . . . .N (3.15) 

Here, L and N are the hidden units and training datasets (in numbers), xn is the input 
of the nth feature of the dataset; ωi, bi are the weight and bias vectors connecting 
the input and hidden layer �i, is the weight vector between ith hidden layer (i = 1, 
2, L) and output. � is an activation function employed elementwise to the result of 
the linear transformation. 

The process is similar to the back-propagation in standard neural networks and is 
as follows (Eqs. 3.16–3.17): 

yobs = λ� (3.16)
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Fig. 3.8 The architecture of basic ELM

λ = 

⎡ 

⎢ 
⎢ 
⎣

�(ω1 × x1 + b1) · · · �(ωL × x1 + bL) 
... · · · ...

�(ω1 × xN + b1) . . . �(ωL × xN + bL) 

⎤ 

⎥ 
⎥ 
⎦ 

N×L

� = 

⎡ 

⎢ 
⎢ 
⎣

�T 
1 
...

�T 
L 

⎤ 

⎥ 
⎥ 
⎦ 

L×m 

yobs = 

⎡ 

⎢ 
⎢ 
⎣ 

yT 1 
... 
yT N 

⎤ 

⎥ 
⎥ 
⎦ 

N ×m 

(3.17) 

λ refers to the hidden output layer matrix linking the input and hidden layer, and m 
is the number of outputs. Yobs represents the observed data. The working mechanism 
of ELM is as follows: 

• Initial assignment of weights and biases 
• Computation of λ 
• Computation of the output vector between the hidden and output layer

	

� = λ†yobs; λ† refers to Moore–Penrose generalized inverse of the matrix λ,
	

� is 
the estimated output weight vector.
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• Use
	

� to predict new output, ypred = λ
	

�, ypred is predicted output. 

It is challenging to understand the working of the model with randomly generated 
weights. Room for flexibility is minimal as it is a one-layer network. In addition, the 
algorithm requires careful input scaling to ensure that they are in a range appropriate 
for the activation function. Otherwise, it may lead to poor prediction accuracy. 

Numerical problem 3.8. Table 3.15 presents datasets with two input variables 
(x1, x2), Corrected speed, Pressure ratio, and one output variable (yobs), Corrected 
flow rate. Analyze the problem in the ELM framework using the Hyperbolic Tangent 
Function. 

Solution: 

Step 1: Weights connecting the input and hidden layers are randomly initialized. A 
set of weights characterizes each node (ω1, ω2) and a bias (b). For this example, one 
hidden layer with two nodes is considered. Two weights are randomly generated for 
each input feature, which are as follows (Table 3.16): 

Step 2: Computation of λ (refer to Eq. 3.17): 

λ = 

⎡ 

⎢ 
⎣

�(ω1 × xL + b1) · · · �(ωL × x1 + bL) 
... · · · ...

�(ω1 × xN + b1) . . . �(ωL × xN + bL) 

⎤ 

⎥ 
⎦ 

N×L 

The activation function is Hyperbolic tangent, �(Z) = (e
z−e−z ) 

(ez+e−z ) .

Table 3.15 Information 
about input and output Dataset x1 x2 yobs 

1 2 3 4 

2 6 11 7 

Table 3.16 Random weight 
matrix Input Node Hidden node 

λ1 

Hidden node 
λ2 

x1 0.15 0.35 

x2 0.25 0.50 

b 0.1 0.2 
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Similarly, the below feature matrix λ is obtained by calculating all hidden layer 
outputs. 

λ =
[

�(2 × 0.15 + 3 × 0.25 + 0.1) �(2 × 0.35 + 3 × 0.5 + 0.2)
�(6 × 0.15 + 11 × 0.25 + 0.1) �(6 × 0.35 + 11 × 0.5 + 0.2)

]

N×L 

λ =
[

�(1.15) �(2.4)
�(3.75) �(7.8)

]

λ1 λ2 

λ =
[
0.8178 0.9836 
0.9989 0.9999

]

Step 3: Computation of output weight vector

	

� = λ† yobs 

where λ† = (λTλ)−1λT; Here, λT is the transpose of feature matrix λ, yobs is a 
vector of observed output. To solve for �, use the Moore–Penrose pseudoinverse of 
λ, which is denoted by λ†: 

λT =
[
0.8178 0.9989 
0.9836 0.9999

]

(λT λ) =
[
1.6666 1.8032 
1.8032 1.9673

]

(λT λ)−1 = 1 

det(λTλ) 
Adjoint(λT λ) 

(λT λ)−1 =
[

72.435 −66.394 
−66.394 61.365

]

λ† = (λTλ)−1λT =
[

72.435 −66.394 
−66.394 61.365

][
0.8178 0.9989 
0.9836 0.9999

]

=
[

−6.0674 5.9685 
6.0613 −4.9624

]

Output weight vector �̂ = λ†yobs =
[−6.0674 5.9685 

6.0613 −4.9624

][
4 
7

]

[
(−6.0674 × 4) + (5.9685 × 7) 
(6.0613 × 4) + ( − 4.9624 × 7)

]

=
[

17.5099 
−10.4916

]

The output variable is a linear combination of hidden layer nodes, and the 
corresponding Equation is 

ŷpred = (17.5099 × λ1) + (−10.4916 × λ2)
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Using the λ and output variable from the previous steps, predicting the output 
for the training dataset (by multiplying the � with hidden layer output values of the 
input): 

ŷ1 = (17.5099 × 0.8178) + (−10.4916 × 0.9836) = 4 
ŷ2 = (17.5099 × 0.9989) + (−10.4916 × 0.9999) = 7 

The Mean Square Loss Function (MSLF) is presented in Table 3.17. 
MSLF = 0. Hence, the parameters employed are logical. 

Numerical problem 3.9. Three-input variables (x1, x2, x3), Catalyst loading, Gasifi-
cation temperature, blending amount, and one output (yobs), Syngas yield is consid-
ered (Table 3.18). Analyze the problem in the ELM framework using the Sigmoid 
activation function. 

Solution: 

Step 1: Weights connecting the input and hidden layers are randomly initialized. A set 
of weights characterizes each node (ω1, ω2, ω3) and a bias (b). For this example, one 
hidden layer with three nodes is considered. Three weights are randomly generated 
for each input feature, which are as follows (Table 3.19):

Step 2: Computation of λ (refer to Eq. 3.17): 

λ = 

⎡ 

⎢ 
⎣

�(ω1 × xL + b1) · · · �(ωL × x1 + bL) 
... · · · ...

�(ω1 × xN + b1) . . . �(ωL × xN + bL) 

⎤ 

⎥ 
⎦ 

N×L

Table 3.17 MSLF computation 

Dataset x1 x2 yobs y
∧

pred MSLF 

1 2 6 4 4 0 

2 3 11 7 7 0 

Table 3.18 Information about input and output 

Dataset x1 x2 x3 yobs 

1 1 2 3 5 

2 2 3 4 6 

3 3 4 5 7 
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Table 3.19 Random weight 
matrix Input Node Hidden node 

λ1 

Hidden node 
λ2 

Hidden node 
λ3 

x1 0.2 0.4 0.3 

x2 0.5 0.1 0.4 

x3 0.3 0.5 0.2 

b 0.1 0.2 0.3

The activation function is Sigmoid, �(z) = 1 
1+e(−z) 

Similarly, by calculating all hidden layer outputs, λ is obtained. 

λ = 

⎡ 

⎢ 
⎣ 

ψ(1 × 0.2 + 2 × 0.5 + 3 × 0.3 + 0.1) ψ(1 × 0.4 + 2 × 0.1 + 3 × 0.5 + 0.2) ψ(1 × 0.3 + 2 × 0.4 + 3 × 0.2 + 0.3) 
ψ(2 × 0.2 + 3 × 0.5 + 4 × 0.3 + 0.1) ψ(2 × 0.4 + 3 × 0.1 + 4 × 0.5 + 0.2) ψ(2 × 0.3 + 3 × 0.4 + 5 × 0.2 + 0.3) 
ψ(3 × 0.2 + 4 × 0.5 + 5 × 0.3 + 0.1) ψ(3 × 0.4 + 4 × 0.1 + 5 × 0.5 + 0.2) ψ(3 × 0.3 + 4 × 0.4 + 5 × 0.2 + 0.3) 

⎤ 

⎥ 
⎦ 

N×L 

λ = 

⎡ 

⎣
�(2.2) �(2.3) �(2)
�(3.2) �(3.3) �(3.1)
�(4.2) �(4.3) �(3.8) 

⎤ 

⎦ 

λ1 λ2 λ3 

λ = 

⎡ 

⎣ 
0.90025 0.90887 0.88080 
0.96083 0.96443 0.95689 
0.98523 0.98661 0.97812 

⎤ 

⎦ 

Step 3: Computation of output weight vector. �̂ = λ†yobs 

where λ† = (λTλ)−1λT; Here, λT is the transpose of λ, yobs is observed output. 
To solve for � , use the Moore–Penrose pseudoinverse of λ, which is denoted by 

λ†: 

λT = 

⎡ 

⎣ 
0.90025 0.96083 0.98523 
0.90887 0.96443 0.98661 
0.88080 0.95689 0.97812 

⎤ 

⎦ 

(λT λ) = 

⎡ 

⎣ 
2.70432 2.71690 2.67602 
2.71690 2.72957 2.68841 
2.67602 2.68841 2.64817 

⎤ 

⎦ 

(λT λ)−1 = 1 

det(λTλ) 
Adjoint(λT λ)

(
λT λ

)−1 = 

⎡ 

⎣ 
210103.04337 −147638.78660 −62430.41641 

−147638.78660 106986.43917 40579.31809 
−62430.41641 40579.31809 21891.41874 

⎤ 

⎦
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Table 3.20 MSLF computation 

Dataset x1 x2 x3 yobs y
∧

pred MSLF 

1 1 2 3 5 4.98977 0.000105 

2 2 3 4 6 6.12951 0.016773 

3 3 4 5 7 6.88268 0.013764 

λ† = (λTλ)−1λT = 

⎡ 

⎣ 
−27.90996 −253.00896 273.47927 
67.21071 155.09989 −212.82836 

−39.69591 98.57442 −59.92364 

⎤ 

⎦ 

Output weight vector
	

� = λ†yobs = 

⎡ 

⎣ 
−27.90996 −253.00896 273.47927 
67.21071 155.09989 −212.82836 

−39.69591 98.57442 −59.92364 

⎤ 

⎦ 

⎡ 

⎣ 
5 
6 
7 

⎤ 

⎦ 

= 

⎡ 

⎢ 
⎣ 

(−27.90996 × 5) + (−253.00896 × 6) + (273.47927 × 7) 
(67.21071 × 5) + (155.09989 × 6) + (−212.82836 × 7) 
(−39.69591 × 5) + (98.57442 × 6) + (−59.92364 × 7) 

⎤ 

⎥ 
⎦ = 

⎡ 

⎢ 
⎣ 

256.7513 
−223.146 
−26.4985 

⎤ 

⎥ 
⎦ 

The output is ŷpred = 256.7513 × λ1 + (−223.146) × λ2 + (−26.4985) × λ3 

ŷpred = 256.7513 × λ1 + (−223.146) × λ2 + (−26.4985) × λ3. 
Using the λ and output variable from the previous steps, predicting the output 

for the training dataset (by multiplying the � with hidden layer output values of the 
input): 

ŷ1 = 256.7513 × 0.90025 + (−223.146) × 0.90887 + (−26.4985) × 0.88080 = 4.98977 
ŷ2 = 256.7513 × 0.96083 + (−223.146) × 0.96443 + (−26.4985 × 0.95689) = 6.12951 
ŷ3 = 256.7513 × 0.98523 + (−223.146) × 0.98661 + (−26.4985 × 0.97812) = 6.88268 

The MSLF is presented in Table 3.20. 
Here, the total MSLF value is 0.010214. If not satisfied with the obtained MSLF, 

one option is to assign different weights. However, the procedure mentioned above 
remains the same. 

3.7 Logistic Regression 

LR uses the logistic function to predict (Pathak et al., 2020; Pradhan, 2010). The 
output is the chance of occurrence that a specific dataset fits into the positive or 
negative class (1 or 0) (Madhuri et al., 2021) (Eq.  3.18):



3.7 Logistic Regression 55

p = 1 

1 + e−z 
(3.18) 

If the chance of occurrence is more significant than a chosen threshold, the dataset 
is categorized as a positive class; if it is lesser, it belongs to the negative class. Here, 
z is defined as (Eq. 3.19) 

z = ω0 + ω1x1 + ω2 x2 . . .  + ωnxn (3.19) 

Here inputs are x1, x2, x3 . . .  xn, whereas ω0, ω1, ω2, . . .  ωn are the related weights. 
Optimal weights arrived during the training are expected to provide the best 

possible division between the classes. The negative log-likelihood is used as a loss 
function to decrease the cost (Eq. 3.20). 

The loss function for each chosen dataset = −[
yi log(pi) + (1 − yi) log(1 − pi)] 

(3.20) 

The subscript i in Eq. 3.20 refers to the ith training example (i = 1, 2, N). Here, 
the Log represents the natural logarithm. Stochastic gradient descent with a selected 
learning rate to minimize the loss function can be used, where one training example 
is considered at a time, and the weights are updated using it. Each dataset used is 
referred to as an iteration. Iterations can be stopped when there is no significant 
change in average loss per epoch in consecutive epochs. Rate of change of the loss 
function L with reference to ω0, ω1 and ω2 can be computed (Eqs. 3.21–3.23): 

∂L 

∂ω0 
= pi − yi (3.21) 

∂L 

∂ω1 
= x1(pi − yi) (3.22) 

∂L 

∂ω2 
= x2(pi − yi) (3.23) 

Now, using these values, update the values of ωi as per Eq. 3.24: 

ωi = ωi − Lr × 
∂L 

∂ωi 
(3.24) 

The learning rate, Lr, typically is chosen between 10−1 and 10−6. 
The advantages of LR are less training effort, flexibility, implementation and 

interpretation, effectiveness for linearly separable datasets, and less chance of over-
fitting. The challenge is sensitive to noise. 

Numerical problem 3.10. There are 12 datasets representing different locations in a 
city. Each dataset is characterized by two inputs: Distance from the Nearest Stream
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(DNS) and EvapoTranspiration (ET) and one output about flooding (either flooded 
or non-flooded). Detailed information is presented in Table 3.21. Use LR for the 
analysis. Show datasets graphically for visualization. Compute flood status (flooded 
or non-flooded) for DNS and ET values of 6 and 8. 

Solution: 

The datasets are graphically visualized in Fig. 3.9.

Iteration 1: Initial value of pi is needed to compute the rate of change of the loss 
function. In this regard, ω0, ω1 and ω2 are all assumed as zero, making z zero as 
well, and are used for calculating pi [Using Eqs. 3.18–3.19 (for DNS of 2.4 and ET 
of 10.2)]: 

z = 0 + 0 × 2.4 + 0 × 10.2 = 0 

pi = 1 

1 + e−z 
= 1 

1 + e0 
= 0.5 

Plugging in values for the first training example (DNS of 2.4, ET of 10.2, yi = 0), 
the following values will be obtained (using Eqs. 3.21–3.23) 

∂L 

∂ω0 
= pi − yi = 0.5 − 0 = 0.5 

∂L 

∂ω1 
= x1(pi − yi) = 2.4(0.5 − 0) = 1.2

Table 3.21 Datasets considered for the problem 

Dataset DNS ET Did flood occur? Observed yi 

1 2.4 10.2 No 0 

2 12 5.4 Yes 1 

3 4.5 16 No 0 

4 7.6 20.3 Yes 1 

5 9.3 14.5 Yes 1 

6 4.9 7.8 Yes 1 

7 8.1 14.2 No 0 

8 4.3 4.5 Yes 1 

9 3.2 12.4 No 0 

10 5.5 5.5 Yes 1 

11 7.2 11.2 Yes 1 

12 4.5 8.5 No 0 
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Fig. 3.9 Dataset representation for the problem (Red: Non-flooded; Blue: Flooded)

∂L 

∂ω2 
= x2(pi − yi) = 10.2(0.5 − 0) = 5.1 

Using Eq. 3.24, update the values of ωi which is as follows: 

ωi = ωi − Lr × 
∂L 

∂ωi 

Plugging in the values for ω0,ω1, ω2 and assuming a Lr of 0.01, 

ω0 = 0 − 0.01 × 0.5 = −0.005 

ω1 = 0 − 0.01 × 1.2 = −0.012 

ω2 = 0 − 0.01 × 5.1 = −0.051 

Loss for dataset 1 = −[
0 × log(0.5) + 1 × log(0.5)] =  0.6931 

Iteration 2: Calculating pi with the second training example (DNS of 12, ET of 5.4, 
yi = 1) using  Eq.  3.18: 

pi = 1 

1 + e−z 
= 1 

1 + e−[(−0.005)+(−0.012×12)+(−0.051×5.4)] 
= 0.395
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It is followed by calculating the gradients of the weights using Eqs. 3.21–3.23 

∂L 

∂ω0 
= (0.395 − 1) = −0.605 

∂L 

∂ω1 
= 12(0.395 − 1) = −  7.254 

∂L 

∂ω2 
= 5.4(0.395 − 1) = −  3.264 

Updating the weights using Eq. 3.24: 

ω0 = −0.005 − 0.01 × −0.605 = 0.001 

ω1 = −0.012 − 0.01 × −7.254 = 0.061 

ω2 = −0.051 − 0.01 × −3.264 = −0.018 

Loss for dataset 2 = −[
1 × log(0.395) + 0 × log(0.6045)] =  0.928. 

Similarly, all other datasets were processed, completing one epoch. Table 3.22 
presents the results for the epoch 1. 

The average loss is 0.919 for epoch 0. The lower the loss, the better the model 
has trained. A decrease in loss is observed with an increase in epochs (Table 3.23). 
The algorithm terminates when the difference between the average losses of two

Table 3.22 Results at epoch 1 

Dataset DNS ET yi pi 
∂L 
∂ω0 

∂L 
∂ω1 

∂L 
∂ω2 

ω0 ω1 ω2 Loss 

1 2.4 10.2 0 0.500 0.500 1.200 5.100 −0.005 −0.012 −0.051 0.693 

2 12 5.4 1 0.395 −0.605 −7.254 −3.264 0.001 0.061 −0.018 0.928 

3 4.5 16 0 0.495 0.495 2.227 7.919 −0.004 0.038 −0.098 0.683 

4 7.6 20.3 1 0.155 −0.845 −6.419 −17.146 0.005 0.102 0.074 1.862 

5 9.3 14.5 1 0.884 −0.116 −1.080 −1.684 0.006 0.113 0.091 0.123 

6 4.9 7.8 1 0.781 −0.219 −1.075 −1.712 0.008 0.124 0.108 0.248 

7 8.1 14.2 0 0.927 0.927 7.510 13.166 −0.001 0.049 −0.024 2.62 

8 4.3 4.5 1 0.525 −0.475 −2.040 −2.135 0.003 0.069 −0.002 0.643 

9 3.2 12.4 0 0.549 0.549 1.756 6.803 −0.002 0.052 −0.070 0.795 

10 5.5 5.5 1 0.474 −0.526 −2.894 −2.894 0.003 0.081 −0.042 0.747 

11 7.2 11.2 1 0.530 −0.470 −3.386 −5.266 0.008 0.115 0.011 0.635 

12 4.5 8.5 0 0.650 0.650 2.924 5.523 0.001 0.085 −0.044 1.049 

Average 
loss 

0.919 
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Table 3.23 The average loss 
in each epoch Epoch Loss 

0 0.919 

1 0.836 

2 0.793 

3 0.768 

4 0.751 

5 0.740 

6 0.732 

7 0.725 

8 0.720 

9 0.716 

10 0.713 

… … 

2915 0.630 

consecutive epochs is less than or equal to 10–6, which occurred at epoch 2915 
(Fig. 3.10). 

The values of the weights at this epoch are found to be

Fig. 3.10 Status of flood nodes at epoch 2915 (Red: Non-flooded; Blue: Flooded) 
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ω0 = −1.934, ω1 = 0.771, ω2 = −0.223 

To predict the class (flooded or non-flooded) of an unseen dataset, the values of 
DNS and ET, i.e., 6 and 8, can be directly substituted in Eq. 3.19. 

z = −1.934 + 0.771 × 6 − 0.223 × 8 = 0.908 

Visualizing the classification by calculating the probability for all possible datasets 
(using the updated weights) as follows: 

pi = 1 

1 + e−z 
= 1 

1 + e−0.908 
= 0.713 

If the output value is more significant than 0.5, the prediction is considered 
as flooded. Two non-flooded locations have been incorrectly classified as flooded, 
while one flooded location has incorrectly been classified as non-flooded (refer to 
Table 3.24). 

Numerical problem 3.11. The dataset consists of 8 thermal power plants 
(Table 3.25). Inputs are TEMperature (TEM) and HUMidity (HUM), and the output 
is about safety (either safe or unsafe). Consider initial weights as 0.1. LR can be 
utilized for the analysis. Solve the problem for one epoch. Compute the status of the 
thermal power plant for a TEM value of 10 and a HUM value of 5.

Solution:

Table 3.24 Observed and predicted flood occurrences at epoch 2915 

Dataset DNS ET Flooded? Observed yi z* Predicted 
probability 
p 

Flood 
occurrence+ 

1 2.4 10.2 No 0 −2.358 0.086 0 

2 12 5.4 Yes 1 6.114 0.998 1 

3 4.5 16 No 0 −2.033 0.116 0 

4 7.6 20.3 Yes 1 −0.601 0.354 0 

5 9.3 14.5 Yes 1 2.003 0.881 1 

6 4.9 7.8 Yes 1 0.105 0.526 1 

7 8.1 14.2 No 0 1.145 0.759 1 

8 4.3 4.5 Yes 1 0.378 0.593 1 

9 3.2 12.4 No 0 −2.232 0.097 0 

10 5.5 5.5 Yes 1 1.080 0.746 1 

11 7.2 11.2 Yes 1 1.120 0.754 1 

12 4.5 8.5 No 0 −0.360 0.411 0 

*z = −1.934 + 0.771 × DNS − 0.223 × ET;p = 1 
1+e−z 
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Table 3.25 Dataset for the problem 

Dataset TEM HUM Is the plant safe? Observed yi 

1 1 30 No 0 

2 38 1 Yes 1 

3 1 18 No 0 

4 8 13 No 0 

5 46 50 No 0 

6 23 16 Yes 1 

7 5 26 No 0 

8 47 17 No 0

Iteration 1: Initial value of pi is needed to compute the rate of change of the loss 
function, i.e., when ω0, ω1 and ω2 are all taken as 0.1. Calculating pi Using Eqs. 3.19 
and 3.18 (for TEM of 1 and HUM of 30) 

z = 0.1 + 0.1 × 1 + 0.1 × 30 = 3.2 

pi = 1 

1 + e−z 
= 1 

1 + e−3.2 
= 0.9608 

Plugging in values for the first training example (TEM of 1, HUM of 30, yi = 0) 
and using Eqs. 3.21–3.23, the output is as follows: 

∂L 

∂ω0 
= pi − yi = 0.9608 − 0 = 0.9608 

∂L 

∂ω1 
= x1(pi − yi) = 1(0.9608 − 0) = 0.9608 

∂L 

∂ω2 
= x2(pi − yi) = 30(0.9608 − 0) = 28.83 

Now, using these values, the updation of values of ωi 

ωi = ωi − α × 
∂L 

∂ωi 

Plugging in the values for ω0,ω1, ω2 and assuming a learning rate α of 0.01 (using 
Eq. 3.24) 

ω0 = 0.1 − 0.01 × 0.9608 = 0.0904 

ω1 = 0.1 − 0.01 × 0.9608 = 0.0904
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ω2 = 0.1 − 0.01 × 28.83 = −0.1883 

Iteration 2: Calculating pi with the second training example (TEM of 38, HUM of 
1, yi = 1) using  Eq.  3.18, 

pi = 1 

1 + e−z 
= 1 

1 + e−[(0.0904)+(0.0904×38)+(−0.1883×1)] 
= 0.9657 

It is followed by calculating the gradients of the weights using Eqs. 3.21–3.23 

∂L 

∂ω0 
= (0.9657 − 1) = −  0.0343 

∂L 

∂ω1 
= 38(0.9657 − 1) = −  1.3043 

∂L 

∂ω2 
= 1(0.9657 − 1) = −  0.0343 

Updating the weights using Eq. 3.24: 

ω0 = 0.0904 − 0.01 × −  0.0343 = 0.0907 

ω1 = 0.0904 − 0.01 × −  1.3043 = 0.1034 

ω2 = −  0.1883 − 0.01 × −  0.0343 = −  0.1879 

Similarly, all other datasets were processed, completing one epoch. Table 3.26 
presents the results for the epoch 1. 

Table 3.26 Results at epoch 1 

Dataset TEM HUM yi pi 
∂L 
∂ω0 

∂L 
∂ω1 

∂L 
∂ω2 

ω0 ω1 ω2 

1 1 30 0 0.961 0.9608 0.9608 28.8250 0.0904 0.0904 −0.1883 

2 38 1 1 0.966 −0.0343 −1.3043 −0.0343 0.0907 0.1034 −0.1879 

3 1 18 0 0.040 0.0396 0.0396 0.7130 0.0903 0.1030 −0.1950 

4 8 13 0 0.165 0.1651 1.3207 2.1462 0.0887 0.0898 −0.2165 

5 46 50 0 0.001 0.0014 0.0622 0.0677 0.0887 0.0892 −0.2172 

6 23 16 1 0.208 −0.7916 −18.2058 −12.6649 0.0966 0.2713 −0.0905 

7 5 26 0 0.289 0.2889 1.4445 7.5112 0.0937 0.2568 −0.1656 

8 47 17 0 1.000 0.9999 46.9959 16.9985 0.0837 −0.2131 −0.3356
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z = 0.0837 + (−0.2131 × TEM) + (−0.3356 × HUM) 
= 0.0837 + (−0.2131 × 10) + (−0.3356 × 5) = −3.7253 

pi = 1 
1+e−z = 1 

1+e3.7253 = 0.0235 indicating unsafe plant (based on the threshold of 
0.5). 

3.8 K-Nearest Neighbours 

KNN stores all the datasets and classifies new ones built on distance functions 
(Alfeilat et al., 2019; Modaresi et al., 2018; Uddin et al., 2022). Distance from 
the testing dataset to each training dataset can be computed using Eq. 3.25 (Madhuri 
et al., 2021): 

D(X, Xi) = 

⎛ 

⎝ 
n∑

j=1

∣
∣xj − xij

∣
∣p 

⎞ 

⎠ 
1/p 

(3.25) 

where X (x1, x2, x3 . . .  xn) are testing datasets, Xi(xi1, xi2, xi3 . . .  xin) are training 
datasets (i = 1 to N), n is the number of features, p is the Minkowski metric, 
and N is the number of training examples. It is aimed to predict the class of the 
testing dataset X using the training datasets. KNN does not require training. The 
entire dataset is presented to the algorithm, and new predictions are made based on 
distance measures. Then, the most suitable class is selected for the training dataset 
among K-nearest neighbours to the testing dataset. 

The advantages are fewer parameter requirements and no impact of adding or 
removing datasets. 

Numerical problem 3.12. The dataset presented in Table 3.27 is related to flood 
occurrence and is characterized by two input variables, DNS and ET. Employ KNN 
technique. Identify the closest K-nearest neighbours for DNS of 9 and ET of 13.

Solution: 

KNN operates on an elementary principle. The closest K-neighbours decide the class 
of a new dataset. The newer dataset (9-unit DNS and 13-unit ET) will be classified 
as flooded since the three closest datasets to it are of the positive class when K = 3 
(Fig. 3.11). A similar computation can be done for K = 4 or K  = 5. However, one 
or more values of K may provide optimal results.

To verify the above claim, the Euclidean distance (p = 2 in Eq.  3.25) between 
training and the testing dataset can be found, and the distances in ascending order 
(Table 3.28).

Distance of (8.1, 14.2) from (9, 13) 

√
(8.1 − 9)2 + (14.2 − 13)2 = 1.5
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Table 3.27 Datasets related to flood occurrence 

Dataset DNS ET Did flood occur? Observed yi 

1 2.4 10.2 No 0 

2 12 5.4 Yes 1 

3 4.5 16 No 0 

4 7.6 20.3 Yes 1 

5 9.3 14.5 Yes 1 

6 4.9 7.8 Yes 1 

7 8.1 14.2 No 0 

8 4.3 4.5 Yes 1 

9 3.2 12.4 No 0 

10 5.5 5.5 Yes 1 

11 7.2 11.2 Yes 1 

12 4.5 8.5 No 0

Fig. 3.11 KNN-three nearest neighbours (Red: Non-flooded; Blue: Flooded)

As evident from Table 3.28, amongst the first three closest training datasets, 2 are 
of the 1 class, i.e., flooded, and thus, the testing dataset is also assigned the class of 1. 

Numerical problem 3.13. The dataset is related to Solar power plants linked to 
renewal energy engineering (Table 3.29). Temperature (TEM) and humidity (HUM)
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Table 3.28 Distance of test 
dataset from each training 
dataset 

DNS ET yi Distance 

8.100 14.2 0 1.50 

9.300 14.5 1 1.53 

7.200 11.2 1 2.55 

4.500 16 0 5.41 

3.200 12.4 0 5.83 

4.5 8.5 0 6.36 

4.9 7.8 1 6.62 

2.4 10.2 0 7.17 

7.6 20.3 1 7.43 

12 5.4 1 8.17 

5.5 5.5 1 8.28 

4.3 4.5 1 9.71

are the inputs, whereas the status of the plant is the output. Employ KNN technique. 
Identify the closest K-nearest neighbours for TEM of 44 and HUM of 46. 

Solution: 

The closest K-neighbours decide the class of a new dataset. In this case, the new 
dataset is 44-unit TEM and 46-unit HUM. To verify the above claim, the Euclidean 
distance with p = 2 (Eq.  3.25) from the testing dataset (or new dataset) to every

Table 3.29 Dataset related to Solar power plants 

Dataset TEM HUM Is the plant is safe? Observed yi 

1 1 30 No 0 

2 38 1 Yes 1 

3 1 18 No 0 

4 8 13 No 0 

5 46 50 No 0 

6 23 16 Yes 1 

7 5 26 No 0 

8 47 17 No 0 

9 43 29 Yes 1 

10 37 2 Yes 1 

11 21 37 Yes 1 

12 45 43 No 0 

13 50 23 Yes 1 

14 44 25 Yes 1 

15 10 36 Yes 1 



66 3 Classical Machine Learning Algorithms

Table 3.30 Distance of test 
dataset from each training 
dataset 

TEM HUM yi Distance 

45 43 0 3.16 

46 50 0 4.47 

43 29 1 17.03 

44 25 1 21.00 

50 23 1 23.77 

21 37 1 24.70 

47 17 0 29.15 

10 36 1 35.44 

23 16 1 36.62 

5 26 0 43.83 

37 2 1 44.55 

38 1 1 45.40 

1 30 0 45.88 

8 13 0 48.84 

1 18 0 51.31 

training dataset can be estimated. Arrange the distances in ascending order (column 
4: Table 3.30). 

Distance of (45, 43) from (44, 46):
√

(45 − 44)2 + (43 − 46)2 = 3.16 
As evident from column 4 of Table 3.30, the first two closest training datasets, 2 

are of the 0 class, i.e., unsafe, and thus, the testing dataset is also assigned the class 
of 0.
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Revision Questions and Exercise Problems 

3.1. One input layer (humidity, temperature, rainfall, wind speed, and road surface 
temperature) and one hidden layer with one node exist. Input values are 0.18, 
0.36, 0.54, 0.68, and 0.82. Assume weights between inputs and hidden node 
as 0.34, 0.54, 0.64, 0.74, and 0.84. Compute output from the hidden layer 
using the ReLU and hyperbolic tangent activation functions. Comment on the 
output. 

3.2. What is FFBP-ANN? Explain the philosophy behind the same. 
3.3. Five inputs, A to E, with values of 3, 4, 6, 8, and 9, produce an output of 0.8. It 

is suggested that one hidden layer be included with one node. Initial weights 
between inputs and hidden are 0.2, 0.45, 0.65, and 0.85, whereas it is 0.4 in 
the case of hidden to output. Establish a relationship using FFBP-ANN with 
Sigmoid as the activation function. Show the computations for one epoch with 
a learning rate of 0.24. 

3.4. What is WNN? Explain the philosophy behind the same. 
3.5. What is the decomposition principle employed in WNN? 
3.6. What are the parameters that govern the WNN? 
3.7. What are mother wavelets and their functions? Mention the names of three 

mother wavelets. 
3.8. Five datasets with two input variables (x1 & x2) and one output (y) are related 

to biomedical engineering (Table 3.31). Relate inputs and output utilizing 
WNN. 

3.9. What is SVR? Explain the philosophy behind the same. 
3.10. What are the parameters that govern SVR? 
3.11. What is the Kernel function? What types of kernels can be employed while 

working on SVR? 
3.12. What is a hyperplane in SVR? 
3.13. What are the advantages and disadvantages of SVR? 
3.14. Table 3.32 presents five datasets, with input (x) and output (y) in the highway 

alignment framework. Establish a relationship between them using SVR.
3.15. What is ELM? Explain the philosophy behind the same. 
3.16. What are the advantages and disadvantages of ELM? 
3.17. Three datasets were developed experimentally, with three input variables 

(x1, x2, x3) and one output variable (yobs). Analyze the problem in the ELM 
framework (refer to Table 3.33):

Table 3.31 Information 
about datasets Dataset x1 x2 y 

1 2 1 4 

2 3 4 8 

3 4 7 12 

4 8 9 16 

5 9 11 22 
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Table 3.32 Information 
about datasets Dataset x y 

1 1.2 4.2 

2 2.1 7.1 

3 3.3 5.3 

4 4.3 9.3 

5 5.3 10.3

Table 3.33 Information about datasets 

Dataset x1 x2 x3 yobs 

1 1.2 2.2 3.3 5.5 

2 2.1 3.1 4.1 6.1 

3 3.2 4.2 5.3 7.3 

3.18. What is the physical significance of weights in LR? 
3.19. What is the function of non-linear transformation in LR? 
3.20. What is meant by epoch and iteration in the context of LR? 
3.21. Mention one distinct advantage in LR that affects the accuracy of the outcome. 
3.22. What is KNN? Explain the philosophy behind the same. 
3.23. What is the physical meaning of K in KNN? 
3.24. Does KNN require any training? Justify your response logically. 
3.25. Mention one distinct advantage in KNN that affects the accuracy of the 

outcome. 
3.26. Solve the problem utilizing LR and KNN. Data is presented in Table 3.34. 

You can assume suitable data, if any.

Advanced Review Questions 

3.27. Why is the activation function also termed as a transfer function? 
3.28. Can you propose a new activation function and justify its utility over the 

existing one? 
3.29. What is over-fitting and under-fitting? Can you minimize the same? 
3.30. What are discrete and continuous mother wavelets? Explain their suitability. 
3.31. Why is LR preferred over linear regression for binary classification problems? 
3.32. Is normalization of the dataset necessary? 
3.33. What is the difference between feature scaling and normalization? 
3.34. What is the concept of the lazy learner in KNN? 
3.35. What is the basis for optimal K in the KNN? What is the implication of 

choosing the small values of K?
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Table 3.34 Information about features and flooding status 

Dataset DNS ET yi Flooded? 

1 2.8 10.8 1 Yes 

2 12.6 5.8 0 No 

3 4.8 16.8 1 Yes 

4 7.8 20.8 0 No 

5 9.9 14.8 1 Yes 

6 6.9 8.8 0 No 

7 8.8 16.2 0 No 

8 4.8 4.8 1 Yes 

9 3.8 12.8 1 Yes 

10 6.5 5.8 1 Yes 

11 7.8 11.8 0 No 

12 4.8 8.8 0 No
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Chapter 4 
Advanced Machine Learning Algorithms 

4.1 Introduction 

The chapter describes a few advanced ML algorithms specifically employed for 
forecasting. They are Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Long Short-Term Memory (LSTM), Bi-directional (Bi)-LSTM, 
Gated Recurrent Unit (GRU), and possible hybridizations of these algorithms. The 
chapter also discusses Boosting Algorithms, viz., Adaptive Boosting (AdaBoost), 
eXtreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost). 

4.2 Convolutional Neural Networks 

CNN is established on the philosophy of local neural connectivity motivated by the 
cognitive process of the animal visual cortex (Islam et al., 2022; Neu et al., 2022). 
Figure 4.1 presents the architecture of CNN (Van et al., 2020). Details of CNN are 
presented in Vogeti et al. (2024).

• Layer-I: The input layer feeds the data to the model. The space-specific and time-
specific details from the previous are utilized to correlate the observed variable. 
Information about input variables at distinct times is the basis for components of 
the matrix. 

• Layer-II: The convolution layer which affects significantly feature extraction, 
consisting of neurons ( features refer to the dimensionality of output feature maps 
after applying convolution and pooling operations; neurons per layer determine 
the capacity of the model to capture and represent data, the range is 1–256). It 
has a convoluted matrix, a product of filter (or kernel), and input matrices. Filters 
in a convolutional layer determine the number of unique features the layer can 
detect, such as edges, textures, or complex patterns in the input data. Balancing
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Fig. 4.1 Architecture of 
CNN 

the number of kernels ensures sufficient feature detection capability. It is ensured 
by starting with fewer kernels in the initial layers and increasing them gradually 
in deeper layers. Related expression for ith data is expressed as (Eq. 4.1)

�i(l, m) = 
N�H∑

a=1 

N�W∑

b=1

(
ιl+a−1, m+b−1(i) × �a, b(i)

) + Bias (4.1) 

where �i(l, m) is the convolutional layer for ith data; l and m refer to the row and 
column features of the convoluted matrix; N�H and N�W , respectively, the height 
and width of the filter; �a,b(i) represents the filter matrix element of ath row and 
bth column for ith data; × denotes the dot product; and ιl+a−1, m+b−1(i) represents
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the input matrix element of (l + a − 1)th row and (m + b − 1)th column for ith 
data. 

• Layer-III: The pooling layer is a down-sampling operation that reduces the dimen-
sionality of feature maps, thus decreasing computational complexity and mini-
mizing over-fitting. Max pooling (selects the maximum value in each pooling 
window, preserving prominent features, and introducing spatial invariance) and 
average pooling (computes the average value, retaining more contextual informa-
tion) are the frequently utilized types of pooling operations. This operation reduces 
the number of learnable parameters by estimating the maximum or average value 
of each row and captures the most pertinent features in the input layer (Eq. 4.2): 

Aρi = avg�i(l, m), where l ∈ N�H and m ∈ N�W (4.2) 

where avg �i(l, m) represents the average pooled layer for ith data. 
• Layer-IV: In a flatten layer, the pooled features are metamorphosed into a one-

dimensional vector and sent to the fully connected layer. 
• Layer-V: In a fully connected layer, different features that were learned by the 

convolutional, pooling and flatten layers are metamorphosed into a dense vector, 
and their corresponding elements in this layer are expressed as (Eqs. 4.3–4.5): 

ζ1 i = ω11Aρ1 + ω01 (4.3) 

ζ2 i = ω12Aρ2 + ω02 (4.4) 

ζ3 i = ω13Aρ3 + ω03 (4.5) 

where ζ1 i , ζ2 i , and ζ3 i represent the first, second, and third elements of the dense 
one-dimensional vector of the fully connected layer; ω11, ω12, ω13 are the weights 
associated with the elements of dense vector; and ω01, ω02, ω03 are the biases 
associated with the elements of dense vector. 

• Layer-VI: The last is the output layer (Eq. 4.6): 

yc p,i =
eζc i

∑NSM 
c′=1 e

ζc
′
i 

(4.6) 

where yc p, i is the output element estimated for ith data; NSM is the number of 

Softmax units (if the Softmax function is employed); and ζc i and ζ
c′
i are compo-

nents of a dense, fully connected layer, and the loss function is computed. The 
process continues until the termination criterion is achieved (Alzubaidi et al., 
2021). Figure 4.2 presents the workflow of CNN.
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Fig. 4.2 Workflow of CNN 

Other parameters that govern the training process are batch size, activation func-
tion, learning rate, epochs, and dropout. The challenge in CNN is its rigid structure 
for accommodating an adequate number of parameters, which are susceptible to 
over-fitting. 

Numerical Problem 4.1. Apply the CNN to relate input (prostate volume, age) and 
output (risk factors for prostate cancer). Use the average pooling method. Refer to 
Fig. 4.2 to understand the working steps of the problem. 

Input matrix Observed output matrix 

x1 x2 O 

Dataset 1 4 2 0.5 

Dataset 2 6 4 0.75 

Solution: 

Step 1: Compute � using matrix multiplication of input with filters. 

The � could be computed by matrix multiplication of the input matrix (ι) with the 
appropriate filter matrix (�) that is randomly generated.
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� = ι × �

� (1,1) � (1,2) ι (1,1) ι (1,2) � (1,1) � (1,2)

� (2,1) � (2,2) ι (2,1) ι (2,2) � (2,1) � (2,2) 

The convolutional layer of ith data is mathematically expressed as

�i(l, m) = 
N�H∑

a=1 

N�W∑

b=1

(
ιl+a−1, m+b−1(i) × �a,b(i)

)

The size of the �i(l, m) is denoted by (N�W , N�H ) and is computed as N�W = 
NιW − N�W + 1 and N�H = NιH − N�H + 1. 
For the given problem, the randomly generated� is multiplied by the ι as follows: 

ι × �

4 2 0.4 0.6 

6 4 0.6 0.4 

In this case NιH = NιW = N�H = N�W = 2. 
The output matrix should have a size of 2. In this case, the size of convolution is 

reduced to 1; thus, it is padded with zero elements. Thus, NPW = 1 and NPH = 1 are  
the width and height of the zero padding elements, which are added to find the size 
of the � and are computed as 

N�W = NιW − N�W + NPW + 1 
= 2−2 + 1 + 1 = 2 

N�H = NιH − N�H + NPH + 1 
= 2−2 + 1 + 1 = 2. 

The convolutional matrix size is (N�W , N�H ) = (2,2)

�(1, 1) = 4(0.4) + 2(0.6) = 1.6 + 1.2 = 2.8

�(1, 2) = 4(0.6) + 2(0.4)= 2.4 + 0.8 = 3.2

�(2, 1) = 6(0.4) + 4(0.6) = 2.4 + 2.4 = 4.8

�(2, 2) = 6(0.6) + 4(0.4) = 3.6 + 1.6 = 5.2
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� = 2.8 3.2 

4.8 5.2 

Step 2 Apply the average pooling (Aρ) method over the �: 

Aρ = 
2.8 + 3.2 + 4.8 + 5.2 

4
= 4. 

Step 3 Identifying two output variables by initializing the weights randomly through 
a fully connected layer: 

The weights ω01, ω11, ω02, and ω12 are randomly initialized to obtain the output. 
Consider ω01 = ω11 = 0.5 
Consider ω02 = ω22 = 0.25 

ζ1 i =ω11Aρ + ω01 = 0.5(4) + 0.5 = 2.5 

ζ2 i =ω12Aρ + ω02 = 0.25(4) + 0.25 = 1.25. 

Step 4 Final output computed utilizing the Softmax function: 

The output elements obtained are transmitted through the Softmax layer, which 
produces two units and is expressed as 

yc p,i =
eζ c1 i

∑n 
1 e

ζ
cn 
i 

In this case, the output elements computed are 

yc p,1 =
e2.5 

e2.5 + e1.25 
= 12.182 

12.182 + 3.4903 
= 0.7772 

yc p,2 =
e1.25 

e2.5 + e1.25 
= 3.4903 

12.182 + 3.4903 
= 0.2228. 

Step 5 Calculation of loss function and updation of parameters through back-
propagation of error using the chain rule: 

E1 = O1 − yc p,1 = 0.5 − 0.7772 = −0.2772 

E2 = O2 − yc p,2 = 0.75 − 0.2228 = 0.5272
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Minimization of the loss function is the prime objective. The parameters are 
updated with the back-propagation algorithm until the termination criterion is 
achieved. 

Numerical Problem 4.2. Apply the CNN to establish a relationship between 
confining pressure, tensile strength, and strength of intact rocks. Use the maximum 
pooling method. Refer to Fig. 4.2 to understand the working steps of the problem. 

Input matrix Observed output matrix 

8 5 0.4 

12 8 0.2 

Solution: 

Step 1: Compute � using matrix multiplication of input with filters.

� = ι × �

� (1,1) � (1,2) ι (1,1) ι (1,2) � (1,1) � (1,2)

� (2,1) � (2,2) ι (2,1) ι (2,2) � (2,1) � (2,2) 

The convolutional layer of ith data is mathematically expressed as

�i(l, m) = 
N�H∑

a=1 

N�W∑

b=1

(
ιl+a−1, m+b−1(i) × �a,b(i)

)

The size of the �i(l, m) is denoted by (N�W , N�H ) and are computed as N�W = 
NιW − N�W + 1 and N�H = NιH − N�H + 1. 
For the given problem, the randomly generated� is multiplied by the ι as follows: 

ι × �

8 5 0.55 0.45 

12 8 0.45 0.55 

In this case NιH = NιW = N�H = N�W = 2. 
The output matrix should have a size of 2. In this case, the size of convolution is 

reduced to 1; thus, it is padded with zero elements. Thus, NPW = 1 and NPH = 1 are  
the width and height of the zero padding elements added to find the size of the � and 
is computed as 

N�W = NιW − N�W + NPW + 1 
= 2−2 + 1 + 1 = 2
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N�H = NιH − N�H + NPH + 1 
= 2−2 + 1 + 1 = 2. 

The � is (N�W , N�H ) = (2,2)

�(1, 1) = 8(0.55) + 5(0.45) = 4.4 + 2.25 = 6.65

�(1, 2) = 8(0.45) + 5(0.55) = 3.6 + 2.75 = 6.35

�(2, 1) = 12(0.55) + 8(0.45) = 6.6 + 3.6 = 10.2

�(2, 2) = 12(0.45) + 8(0.55) = 5.4 + 4.4 = 9.8

� = 6.65 6.35 

10.2 9.8 

Step 2 Apply the maximum pooling (Mρ) method over the �: 

Mρ = 10.2. 

Step 3 Identifying two output variables by initializing the weights through a fully 
connected layer: 

The weights ω01, ω11, ω02, and ω12 are randomly initialized to obtain output 
elements. 

Consider ω01 = ω11 = 0.4 
Consider ω02 = ω12 = 0.3 

ζ1 i = ω11Mρ+ω01 = 0.4(10.2) + 0.4 = 4.48 

ζ2 i = ω12Mρ+ω02 = 0.3(10.2) + 0.3 = 3.36. 

Step 4 The final output is computed using the Softmax function: 

The output elements obtained are transmitted through the Softmax layer, which 
produces two units and is expressed as 

yc p,i =
eζ c1 i

∑n 
1 e

ζ
cn 
i 

In this case, the output elements computed are
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yc p,1 =
e4.48 

e4.48 + e3.36 
= 88.2347 

88.2347 + 28.7892 
= 0.754 

yc p,2 =
e3.36 

e4.48 + e3.36 
= 28.7892 

88.2347 + 28.7892 
= 0.246. 

Step 5 Calculation of loss function and updation of parameters through back-
propagation of error using the chain rule: 

E1 = yc p,1 − O1 = 0.754 − 0.4 = 0.354 

E2 = yc p,2 − O2 = 0.246 − 0.2 = 0.046. 

4.3 Recurrent Neural Networks 

RNN (refer to Fig. 4.3) is a variant of ANN specifically developed to examine time 
series data (Orojo et al., 2023). It possesses connections that facilitate the propagation 
of information in the form of data from one time step to the subsequent one, in contrast 
to conventional feed-forward neural networks. During each iteration, the algorithm 
receives an input that modifies its internal state, which signifies the memory of 
the network. This process enables the extraction of dependencies and trends in the 
sequential data. It generates output based on preceding hidden state information.

Consider xt, λt, and yt are input, hidden, and output states at time step t. 
Computations of λt and yt are presented in Eqs. 4.7–4.8. 

λt = σ(ωλ × λt−1 + ωx × xt + bλ) (4.7) 

yt = σ
(
ωy × λt + by

)
(4.8) 

where, ωλ, ωx, and ωy represent the weight matrices of hidden, input, and output 
states; λt−1 indicates previously hidden state information; bλ and by represent the 
bias for the hidden and output state; and σ represents the activation function. During 
training, the RNN learns weight matrices (ωx, ωλ, ωy) and the bias terms (bλ, by) 
by optimizing a specific loss function. One challenge with this algorithm is the 
vanishing gradient, which diminishes over time. In this situation, it is challenging 
for the network to seize long-term dependencies.
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Fig. 4.3 Architecture of RNN

4.4 Long Short-Term Memory 

LSTM is a sub-category of RNN that utilizes memory blocks. These act as nodes in the 
hidden layers and are traversed through gating units (Yu et al., 2019). It demonstrates a 
more remarkable ability to seize long-term dependencies from a complex time series 
(Horchreiter & Schmidhuber, 1997). It can overcome the problem of oscillating 
weights and enormous computational time realized due to vanishing and exploding 
gradients (Vogeti et al., 2024). LSTM architecture is presented in Fig. 4.4 (Van Houdt 
et al., 2020).

i. Firstly, the network receives input information of xt−1, and xt at previous and 
current time stamps t–1 and t, respectively. λt−1 is the hidden state information 
retrieved from (t–1). The forget gate decides the amount of information discarded 
from t–1 and t, respectively. This information retention is done by combining 
the product of αfg and λt−1, product of ωfg and xt, and a bias  bfg. A bias is added 
to enhance the flexibility and training stability in handling the information flow 
in the network. Application of activation function (σ) produces values between 
0 and 1. A value close to 1 (or 0) means most information from the previous 
state is retained (or discarded). For example, a value of 0.4 indicates retention 
of 40% of input information in the network. Information passing through the 
forget gate (Eq. 4.9): 

Forget gate
(
fgt

) = σ
(
ωfgxt + αfgλt−1 + bfg

)
. (4.9)
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Fig. 4.4 Architecture of LSTM (modified and adapted from Vogeti et al., 2024 under CC BY-NC-
ND 4.0 License)

ii. The information that passes through the input gate establishes the new informa-
tion added further to the current memory state. At each time step, the algorithm 
combines the product of αig and λt−1, product of ωig and xt and big. Further, the 
activation function (σ) is applied to this combination (Eq. 4.10): 

Input gate
(
igt

) = σ
(
ωigxt + αigλt−1 + big

)
(4.10) 

where ωig, αig, and big are weight vectors at the current step, previous step, and 
bias vector, respectively, at the input gate. 

iii. Further, the updation of memory cell states determines the information to be 
added to the memory state of an LSTM. This process involves the calculation of 
the new memory cell, μt

′, which is similar to the forget and input gates having 
weights (ωμ, αμ) and bias (bμ) (Eqs. 4.10–4.11). Function tanh is employed for 
storing the information in the new memory cell μt

′ at t to facilitate a quicker 
convergence rate (Eq. 4.11): 

New memory cell
(
μt

′) = tanh
(
ωμxt + αμλt−1 + bμ

)
(4.11) 

where ωμ, αμ, bμ are weight vectors at the current step, previous step, and bias 
vector, respectively, at the cell. 

Information passing through the final memory cell is (Eq. 4.12) 

μt = fgtμt−1 + igtμt
′ (4.12) 

Here, μt−1 describes new memory cells at time t − 1
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iv. The output gate manages the propagation of information from the recent cell to 
the final state (Eqs. 4.13–4.14): 

Information passing through the final hidden cell: 

λt = ogt tanh(μt) (4.13) 

Information obtained through the output gate: 

Output gate
(
ogt

) = σ
(
ωogxt + αogλt−1 + bog

)
(4.14) 

where ωog, αog, and bog are weight vectors at the current step, previous step, 
and bias vectors at the output gate. 

Figure 4.5 shows the workflow of LSTM. Batch size, layer node, number of nodes, 
epochs, learning rate, and dropout exhibit their influence on the weights updated in 
the gating units. An increase in the values of the LSTM layer node, learning rate, 
and epochs positively affects the algorithm performance.

Numerical Problem 4.3. Rainfall, xt = (4,5,6) yields a runoff, yt = (1,1.5,2). Estab-
lish a relationship using LSTM with three hidden units λt−1 = (1,2,3). Assume the 
related weights appropriately. Refer to Fig. 4.5 for understanding the working steps 
of the problem. 

Solution: 

Given, xt = (4,5,6); λt−1 = (1,2,3) 

(λt−1, xt) = (1, 2, 3, 4, 5, 6) 

Assume the weights μt−1 as (5,5,5). 

Step 1 Random initialization of weights and biases for the gating units: 

Input weight vector in forget gate ωfg = 

⎡ 

⎣ 
0 0 0 0 0  −1 
5 6 7 8 9  10  
3 4 5 6 7  8  

⎤ 

⎦. Bias vector in forget gate 

bfg = 

⎡ 

⎣ 
1 
2 
3 

⎤ 

⎦. 

Input weight vector in input gate ωig = 

⎡ 

⎣ 
1 1 1 1 1 1  
2 2 2 2 2 2  
3 3 3 3 3 3  

⎤ 

⎦. 

Bias vector in input gate big = 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦.
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Fig. 4.5 Workflow of LSTM

Input weight vector in cell state ωμ = 

⎡ 

⎣ 
1 1 1 1 1 1  
2 2 2 2 2 2  

−3 −3 −3 −3 −3 −3 

⎤ 

⎦ 

Bias vector in cell state bμ = 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ 

Input weight vector in output gate ωog = 

⎡ 

⎣ 
0.25 0.25 0.25 0.25 0.25 0.25 
0.10 0.10 0.10 0.10 0.10 0.10 
0.50 0.50 0.50 0.50 0.50 0.50 

⎤ 

⎦ 

Bias vector in output gate bog = 

⎡ 

⎣ 
0.75 
0.90 
0.50 

⎤ 

⎦
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(λt−1, xt) = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 
6 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

Step 2 Flow of input information through forget gate layer fgt = σ′ (ωfg.(λt−1, xt) + 
bfg): 

ωfg(λt−1, xt) = 

⎡ 

⎣ 
0 0 0 0 0  −1 
5 6 7 8 9  10  
3 4 5 6 7  8  

⎤ 

⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 
6 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎣ 
(0 × 1) + (0 × 2) + (0 × 3) + (0 × 4) + (0 × 5) + (−1 × 6) 
(5 × 1) + (6 × 2) + (7 × 3) + (8 × 4) + (9 × 5) + (10 × 6) 
(3 × 1) + (4 × 2) + (5 × 3) + (6 × 4) + (7 × 5) + (8 × 6) 

⎤ 

⎦ 

= 

⎡ 

⎣ 
0 + 0 + 0 + 0 + 0 − 6 

5 + 12 + 21 + 32 + 45 + 60 
3 + 8 + 15 + 24 + 35 + 48 

⎤ 

⎦ = 

⎡ 

⎣ 
−6 
175 
133 

⎤ 

⎦ 

ωfg
(
(λt−1, xt) + bfg

) = 

⎡ 

⎣ 
−6 
175 
133 

⎤ 

⎦ + 

⎡ 

⎣ 
1 
2 
3 

⎤ 

⎦ = 

⎡ 

⎣ 
−5 
177 
136 

⎤ 

⎦ 

fgt = σ′(ωfg.(λt−1, xt) + bfg) where, σ′(x) = 1 
1+e−x 

Flow of input information through the forget gate layer fgt = σ′
⎛ 

⎝ 

⎡ 

⎣ 
−5 
177 
136 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−(−5) 

1 
1+e−177 

1 
1+e−136 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.0069 

1 
1 

⎤ 

⎦ (i)



4.4 Long Short-Term Memory 85

Step 3 Flow of input information through the input gate layer igt = σ′(ωig.(λt−1, xt) 
+ big): 

ωig(λt−1, xt) = 

⎡ 

⎣ 
1 1 1 1 1 1  
2 2 2 2 2 2  
3 3 3 3 3 3  

⎤ 

⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 
6 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎣ 
(1 × 1) + (1 × 2) + (1 × 3) + (1 × 4) + (1 × 5) + (1 × 6) 
(2 × 1) + (2 × 2) + (2 × 3) + (2 × 4) + (2 × 5) + (2 × 6) 
(3 × 1) + (3 × 2) + (3 × 3) + (3 × 4) + (3 × 5) + (3 × 6) 

⎤ 

⎦ 

= 

⎡ 

⎣ 
21 
42 
63 

⎤ 

⎦ 

ωig
(
(λt−1, xt) + big

) = 

⎡ 

⎣ 
21 
42 
63 

⎤ 

⎦ + 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
22 
43 
64 

⎤ 

⎦ 

igt =σ′(ωig(λt−1, xt) + big
) = σ′

⎛ 

⎝ 

⎡ 

⎣ 
22 
43 
64 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−22 

1 
1+e−43 

1 
1+e−64 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.999 
1 
1 

⎤ 

⎦ (ii) 

Step 4 Flow of updated information through cell state gate layer μ̃t = tanh 
(ωμ.(λt−1, xt) + bμ): 

ωμ

(
λt−1, xt

) = 

⎡ 

⎢⎣ 
1 1 1 1 1 1  
2 2 2 2 2 2  

−3 −3 −3 −3 −3 −3 

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 
6 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦
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= 

⎡ 

⎢⎣ 
(1 × 1) + (1 × 2) + (1 × 3) + (1 × 4) + (1 × 5) + (1 × 6) 
(2 × 1) + (2 × 2) + (2 × 3) + (2 × 4) + (2 × 5) + (2 × 6) 

(−3 × 1) + (−3 × 2) + (−3 × 3) + (−3 × 4) + (−3 × 5) + (−3 × 6) 

⎤ 

⎥⎦ 

= 

⎡ 

⎢⎣ 
21 
42 

−63 

⎤ 

⎥⎦ 

ωμ

(
(λt−1, xt) + bμ

) = 

⎡ 

⎣ 
21 
42 

−63 

⎤ 

⎦ + 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
22 
43 

−62 

⎤ 

⎦

μ̃t = tanh(ωμ.(λt−1, xt) + bμ), where tanh(x) = ex−e−x 

ex+e−x

μ̃t = tanh 

⎛ 

⎝ 

⎡ 

⎣ 
22 
43 

−62 

⎤ 

⎦ 

⎞ 

⎠ = 

⎡ 

⎢⎣ 

e22−e−22 

e22+e−22 

e43−e−43 

e43+e−43 

e−62−e−(−62) 

e−62+e−(−62) 

⎤ 

⎥⎦ = 

⎡ 

⎣ 
1 
1 

−1 

⎤ 

⎦ (iii) 

Step 5 Computation of updated cell state information μt = fgtμt−1 + igtμ̃t 

Substitute Eqs. (i), (ii), and (iii) for computing the final updated cell state information: 

μt =fgtμt−1 + igtμ̃t = 

⎡ 

⎣ 
0.0069 

1 
1 

⎤ 

⎦ · 
⎡ 

⎣ 
5 
5 
5 

⎤ 

⎦ + 

⎡ 

⎣ 
0.999 
1 
1 

⎤ 

⎦ · 
⎡ 

⎣ 
1 
1 

−1 

⎤ 

⎦ 

= 

⎡ 

⎣ 
1.0325 

6 
4 

⎤ 

⎦ (iv) 

Step 6 Flow of input information through the output gate layer Ogt = σ′(ωog.(λt−1, xt) 
+ bog): 

ωog
(
λt−1, xt

) = 

⎡ 

⎢⎣ 
0.25 0.25 0.25 0.25 0.25 0.25 
0.10 0.10 0.10 0.10 0.10 0.10 
0.50 0.50 0.50 0.50 0.50 0.50 

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 
6 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎣ 
(0.25 × 1) + (0.25 × 2) + (0.25 × 3) + (0.25 × 4) + (0.25 × 5) + (0.25 × 6) 
(0.10 × 1) + (0.10 × 2) + (0.10 × 3) + (0.10 × 4) + (0.10 × 5) + (0.10 × 6) 
(0.50 × 1) + (0.50 × 2) + (0.50 × 3) + (0.50 × 4) + (0.50 × 5) + (0.50 × 6) 

⎤ 

⎥⎦
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= 

⎡ 

⎢⎣ 
5.25 
2.10 
10.50 

⎤ 

⎥⎦ 

ωog(λt−1, xt) + bog = 

⎡ 

⎣ 
5.25 
2.10 
10.50 

⎤ 

⎦ + 

⎡ 

⎣ 
0.75 
0.90 
0.50 

⎤ 

⎦ = 

⎡ 

⎣ 
6 
3 
11 

⎤ 

⎦ 

Ogt = σ′(ωog(λt−1, xt) + bog
) = σ′

⎛ 

⎝ 

⎡ 

⎣ 
6 
3 
11 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−6 

1 
1+e−3 

1 
1+e−11 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.9975 
0.9526 
0.9999 

⎤ 

⎦ (v) 

Step 7 Computation of hidden state information λt = Ogt tanh (μt) 

Substitute Eqs. (iv) and (v) to calculate the hidden state information: 

λt = 

⎡ 

⎣ 
0.9975 
0.9526 
0.9999 

⎤ 

⎦tanh 

⎛ 

⎝ 

⎡ 

⎣ 
1.0325 

6 
4 

⎤ 

⎦ 

⎞ 

⎠ = 

⎡ 

⎣ 
0.9975 
0.9526 
0.9999 

⎤ 

⎦ · 
⎡ 

⎢⎣ 

e1.0325−e−1.0325 

e1.0325+e−1.0325 

e6−e−6 

e6+e−6 

e4−e−4 

e4+e−4 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.9975 
0.9526 
0.9999 

⎤ 

⎦ · 
⎡ 

⎣ 
0.775 
0.9999 
0.9993 

⎤ 

⎦ = 

⎡ 

⎣ 
0.773 
0.9525 
0.9992 

⎤ 

⎦ 

Step 8 Calculate the loss function: 

The predicted outputs are compared with the observed, and the loss function is 
computed (Table 4.1). 

Table 4.1 Loss function 
Observed 
(yt ) 

Predicted (ht ) Loss function 

1 0.773 0.227 

1.5 0.9525 0.5475 

2 0.9992 1.0008
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Numerical Problem 4.4. Relate building strength, xt = (0.5,0.75,1) and vulnera-
bility to earthquakes, yt = (0.1,0.25,0.4) using LSTM. Three hidden units λt−1 = 
(0.01,0.04,0.09) are suggested. Assume the related weights appropriately. Refer to 
Fig. 4.5 for understanding the working steps of the problem. 

Solution: 

Given, xt = (0.5,0.75,1); λt−1 = (0.01, 0.04, 0.09) 

(λt−1, xt) = (0.01, 0.04, 0.09, 0.5, 0.75, 1) 

Assume the weights μt−1 as (3,3,3) 

Step 1 Random initialization of weights and biases for the gating units: 

Input weight vector in forget gate ωfg = 

⎡ 

⎣ 
0 0 0 0 0  −5 
3 2 1 0 4  10  
4 7 5 1 7  15  

⎤ 

⎦. 

Bias vector in forget gate bfg = 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦. 

Input weight vector in input gate ωig = 

⎡ 

⎣ 
1 1 1 1 1 1  
1 1 1 1 1 1  
1 1 1 1 1 1  

⎤ 

⎦. 

Bias vector in input gate big = 

⎡ 

⎣ 
1 
0.5 
1 

⎤ 

⎦. 

Input weight vector in cell state ωμ = 

⎡ 

⎣ 
1 1 1 1 1 1  
0.5 0.5 0.5 0.5 0.5 0.5 
−1 −1 −1 −1 −1 −1 

⎤ 

⎦ 

Bias vector in cell state bμ = 

⎡ 

⎣ 
0.5 
0.5 
0.5 

⎤ 

⎦ 

Input weight vector in output gate ωog = 

⎡ 

⎣ 
0.75 0.75 0.75 0.75 0.75 0.75 
0.20 0.20 0.20 0.20 0.20 0.20 
1 1 1 1 1 1  

⎤ 

⎦ 

Bias vector in output gate bog = 

⎡ 

⎣ 
0.65 
0.70 
0.40 

⎤ 

⎦
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(λt−1, xt) = 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

0.01 
0.04 
0.09 
0.5 
0.75 
1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

Step 2 Flow of input information through forget gate layer fgt = σ′(ωfg.(λt−1, xt) + 
bfg): 

ωfg
(
λt−1, xt

) = 

⎡ 

⎢⎣ 
0 0 0 0 0  −5 
3 2 1 0 4  10  
4 7 5 1 7  15  

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

0.01 
0.04 
0.09 
0.5 
0.75 
1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎣ 
(0 × 0.01) + (0 × 0.04) + (0 × 0.09) + (0 × 0.5) + (0 × 0.75) + (−5 × 1) 
(3 × 0.01) + (2 × 0.04) + (1 × 0.09) + (0 × 0.5) + (4 × 0.75) + (10 × 1) 
(4 × 0.01) + (7 × 0.04) + (5 × 0.09) + (1 × 0.5) + (7 × 0.75) + (15 × 1) 

⎤ 

⎥⎦ 

= 

⎡ 

⎢⎣ 
−5 
13.2 
21.52 

⎤ 

⎥⎦

(
ωfg(λt−1, xt) + bfg

) = 

⎡ 

⎣ 
−5 
13.2 
21.52 

⎤ 

⎦ + 

⎡ 

⎣ 
1 
1 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
−4 
14.2 
22.52 

⎤ 

⎦ 

fgt = σ′(ωfg(λt−1, xt) + bfg
) =σ′

⎛ 

⎝ 

⎡ 

⎣ 
−4 
14.2 
22.52 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−(−4) 

1 
1+e−14.2 

1 
1+e−22.52 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.01799 

1 
1 

⎤ 

⎦ (i)
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Step 3 Flow of input information through the input gate layer igt = σ′(ωig.(λt−1, xt) 
+ big): 

ωig(λt−1, xt) = 

⎡ 

⎢⎣ 
1 1 1 1 1 1  
1 1 1 1 1 1  
1 1 1 1 1 1  

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

0.01 
0.04 
0.09 
0.5 
0.75 
1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎣ 
(1 × 0.01) + (1 × 0.04) + (1 × 0.09) + (1 × 0.5) + (1 × 0.75) + (1 × 1) 
(1 × 0.01) + (1 × 0.04) + (1 × 0.09) + (1 × 0.5) + (1 × 0.75) + (1 × 1) 
(1 × 0.01) + (1 × 0.04) + (1 × 0.09) + (1 × 0.5) + (1 × 0.75) + (1 × 1) 

⎤ 

⎥⎦ 

= 

⎡ 

⎢⎣ 
2.39 
2.39 
2.39 

⎤ 

⎥⎦

(
ωig(λt−1, xt) + big

) = 

⎡ 

⎣ 
2.39 
2.39 
2.39 

⎤ 

⎦ + 

⎡ 

⎣ 
1 
0.5 
1 

⎤ 

⎦ = 

⎡ 

⎣ 
3.39 
2.89 
3.39 

⎤ 

⎦ 

igt = σ′(ωig(λt−1, xt) + big
) =σ′

⎛ 

⎝ 

⎡ 

⎣ 
3.39 
2.89 
3.39 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−3.39 

1 
1+e−2.89 

1 
1+e−3.39 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.9674 
0.9473 
0.9674 

⎤ 

⎦ (ii) 

Step 4 Flow of updated information through cell state gate layer μ̃t = tanh 
(ωμ.(λt−1, xt) + bμ): 

ωμ(λt−1, xt) = 

⎡ 

⎢⎣ 
1 1 1 1 1 1  

0.5 0.5 0.5 0.5 0.5 0.5 

−1 −1 −1 −1 −1 −1 

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

0.01 

0.04 

0.09 

0.5 

0.75 

1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎣ 
(1 × 0.01) + (1 × 0.04) + (1 × 0.09) + (1 × 0.5) + (1 × 0.75) + (1 × 1) 

(0.5 × 0.01) + (0.5 × 0.04) + (0.5 × 0.09) + (0.5 × 0.5) + (0.5 × 0.75) + (0.5 × 1) 
(−1 × 0.01) + (−1 × 0.04) + (−1 × 0.09) + (−1 × 0.5) + (−1 × 0.75) + (−1 × 1) 

⎤ 

⎥⎦
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= 

⎡ 

⎢⎣ 
2.39 

1.195 

−2.39 

⎤ 

⎥⎦

(
ωμ(λt−1, xt) + bμ

) = 

⎡ 

⎣ 
2.39 
1.195 
−2.39 

⎤ 

⎦ + 

⎡ 

⎣ 
0.5 
0.5 
0.5 

⎤ 

⎦ = 

⎡ 

⎣ 
2.89 
1.695 
−1.89 

⎤ 

⎦

μ̃t = tanh
(
ωμ(λt−1, xt) = bμ

)

μ̃t =tanh 

⎛ 

⎝ 

⎡ 

⎣ 
2.89 
1.695 
−1.89 

⎤ 

⎦ 

⎞ 

⎠ = 

⎡ 

⎢⎣ 

e2.89−e−2.89 

e2.89+e−2.89 

e1.695−e−1.695 

e1.695+e−1.695 

e−1.89−e−(−1.89) 

e−1.89+e−(−1.89) 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.943 
0.805 

2.97722 × 10−5 

⎤ 

⎦ (iii) 

Step 5 Computation of updated cell state information μt = fgtμt−1 + igtμ̃t. 
Substitute Eqs. (i), (ii), and (iii) for computing the final updated cell state 

information: 

μt = fgtμt−1 + igtμ̃t = 

⎡ 

⎣ 
0.01799 

1 
1 

⎤ 

⎦ · 
⎡ 

⎣ 
3 
3 
3 

⎤ 

⎦ + 

⎡ 

⎣ 
0.9674 
0.9473 
0.9674 

⎤ 

⎦ · 
⎡ 

⎣ 
0.943 
0.805 

2.97722 × 10−5 

⎤ 

⎦ 

μt = 

⎡ 

⎣ 
0.1005 

3 
3 

⎤ 

⎦ + 

⎡ 

⎣ 
0.9123 
0.7626 

2.8802 × 10−5 

⎤ 

⎦ = 

⎡ 

⎣ 
1.0128 
3.7626 

3 

⎤ 

⎦ (iv) 

Step 6 Flow of input information through the output gate layer Ogt = σ′(ωog.(λt−1, xt) 
+ bog): 

ωog
(
λt−1, xt

) = 

⎡ 

⎢⎣ 
0.75 0.75 0.75 0.75 0.75 0.75 

0.20 0.20 0.20 0.20 0.20 0.20 

1 1 1 1 1 1  

⎤ 

⎥⎦ · 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0.01 

0.04 

0.09 

0.5 

0.75 

1 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎡ 

⎢⎣ 
(0.75 × 0.01) + (0.75 × 0.04) + (0.75 × 0.09) + (0.75 × 0.5) + (0.75 × 0.75) + (0.75 × 1) 
(0.20 × 0.01) + (0.20 × 0.04) + (0.20 × 0.09) + (0.20 × 0.5) + (0.20 × 0.75) + (0.20 × 1) 

(1 × 0.01) + (1 × 0.04) + (1 × 0.09) + (1 × 0.5) + (1 × 0.75) + (1 × 1) 

⎤ 

⎥⎦ 

= 

⎡ 

⎢⎣ 
1.7925 

0.478 

2.39 

⎤ 

⎥⎦
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ωog(λt−1, xt) + bog = 

⎡ 

⎣ 
1.7925 
0.478 
2.39 

⎤ 

⎦ + 

⎡ 

⎣ 
0.65 
0.70 
0.40 

⎤ 

⎦ = 

⎡ 

⎣ 
2.4425 
1.178 
2.79 

⎤ 

⎦ 

Ogt = σ′(ωog(λt−1, xt) + bog
) =σ′

⎛ 

⎝ 

⎡ 

⎣ 
2.4425 
1.178 
2.79 

⎤ 

⎦ 

⎞ 

⎠ 

= 

⎡ 

⎢⎣ 

1 
1+e−2.4425 

1 
1+e−1.178 

1 
1+e−2.79 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.92 
0.7646 
0.942 

⎤ 

⎦ (v) 

Step 7 Computation of hidden state information λt = Ogt tanh (μt) : 
Substitute Eqs. (iv) and (v) to calculate the hidden state information: 

λt = 

⎡ 

⎣ 
0.92 
0.7646 
0.942 

⎤ 

⎦tanh 

⎛ 

⎝ 

⎡ 

⎣ 
1.0128 
3.7626 

3 

⎤ 

⎦ 

⎞ 

⎠ = 

⎡ 

⎣ 
0.92 
0.7646 
0.942 

⎤ 

⎦ · 
⎡ 

⎢⎣ 

e1.0128−e−1.0128 

e1.0128+e−1.0128 

e3.7626−e−3.7626 

e3.7626+e−3.7626 

e3−e−3 

e3+e−3 

⎤ 

⎥⎦ 

= 

⎡ 

⎣ 
0.92 
0.7646 
0.942 

⎤ 

⎦ · 
⎡ 

⎣ 
0.767 
0.9989 
0.995 

⎤ 

⎦ = 

⎡ 

⎣ 
0.7056 
0.7638 
0.9373 

⎤ 

⎦ 

Step 8 Calculate the loss function: 

The predicted outputs are compared with the observed, and the loss function is 
computed (Table 4.2). 

Table 4.2 Loss function 
Observed 
(yt ) 

Predicted (ht ) Loss function 

0.1 0.7056 0.6056 

0.25 0.7638 0.5138 

0.4 0.9373 0.5373
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4.5 Bi-Directional-LSTM 

Bi-LSTM (Fig. 4.6) is an improvised variation of LSTM competent in capturing 
the past and future of a time series (Roy et al., 2022). It includes two LSTMs to 

accomplish the forward and backward computations of the hidden vectors, �λt and 
← 
λt, 

respectively (Eqs. 4.15 and 4.16).

�λt = f
(
ω1xt + ω2�λt−1

)
(4.15) 

← 
λt = f

(
ω3xt + ω5 

← 
λt−1

)
(4.16) 

The average outputs from both LSTMs are the basis for the forecast, ogt (Eq. 4.17): 

ogt = f
(

ω4�λt + ω6 
← 
λt + Bias

)
(4.17) 

where ω1 is the weight for input to the forward layer; ω3 is the weight for input to 
the backward layer; ω2, ω5 denote the weights for hidden-to-hidden layers; ω4 is the

Fig. 4.6 Architecture of Bi-LSTM (adapted from Deb et al., 2024 under CC BY 4.0 License) 
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weight for forwarding to the output layer; and ω6 is the weight for backward to the 
output layer (Deb et al., 2024). 

4.6 Gated Recurrent Unit 

GRU (refer to Fig. 4.7) has a relatively simplified architecture compared to LSTM, 
resulting in fewer parameters and operations and making them faster to train (Shen 
et al., 2018). It is based on updating and reset gates. The update gate helps decide the 
amount of information that needs to be retrieved from the past information. On the 
contrary, the reset gate establishes the basis for the amount of information that needs 
to be forgotten. The helpful information is finally stored with the help of current 
and final hidden states. The mathematical expressions for GRU are presented in 
Eqs. (4.18–4.21): 

zt = σ(ωz · (λt−1, xt)) (4.18) 

rt = σ(ωr · (λt−1, xt)) (4.19) 

λt = tanh(ω.(rtλt−1, xt)) (4.20)

λ̃t = (1 − zt)λt−1 + (ztλt) (4.21)

where zt presents the update gate information at time t; σ is the activation function; 
ωz is the weight vector for the update gate; λt−1 is the information of hidden state 
at t–1; xt is the input information at t; rt is the information of the reset gate at t; ωr 

is the weight vector for the reset gate; λt and λ̃t present the current and final hidden 
information at t; tanh presents the activation function; and ω is the weight vector for 
the current hidden state. 

4.7 Hybridization of CNN, LSTM, RNN, and GRU 
Algorithms 

The primary idea behind hybridizing different algorithms is to utilize the strengths 
of individuals to enhance simulating efficacy. Some of the possible hybridizations 
are presented as follows: 

The CNN-LSTM utilizes the strengths of CNN and LSTM to enhance simulating 
ability. CNN is efficient at seizing high-dimensional spatial features of data (LSTM 
does not have this capability) with the assistance of convolution filters. It is less



4.7 Hybridization of CNN, LSTM, RNN, and GRU Algorithms 95

Fig. 4.7 Architecture of GRU

competent to establish long-term temporal dependencies (LSTM has this capability, 
which can be facilitated by memory and gating units). In this context, CNN-LSTM 
architecture can efficiently consider spatiotemporal details of data. 

The GRU-RNN tackles the challenge of vanishing gradient found in RNNs. They 
can handle long-term interdependence in time series data by selectively updating 
and resetting information. GRU output is fed into the RNN algorithm as input. The 
output obtained from the RNN is the outcome of the hybrid algorithm. 

The GRU-LSTM architecture combines GRU and LSTM units to capture and 
process temporal dependencies in sequential data. The architecture begins with an 
input layer that receives sequential data fed into the GRU layer. Further, the output 
of GRU is fed into the LSTM architecture, which further passes through three gates 
and generates output. 

The RNN-LSTM algorithm is developed to handle mid- and long-term depen-
dencies of sequential data efficiently. RNN output is fed into the LSTM algorithm 
as input. The output from LSTM can be considered as the outcome of the hybrid 
algorithm. 

The CNN-GRU efficiently handles both spatial and temporal dependencies of 
sequential data. This architecture starts with a CNN layer to bring spatial features 
from the input data. Further, this output is fed as input to the GRU layer. The output 
from GRU can be considered as the outcome of the hybrid algorithm. 

The CNN-GRU-LSTM architecture works similar to the mechanism of CNN-
GRU. It only differs with an LSTM layer added to CNN-GRU. The output obtained
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from CNN-GRU is further fed into the LSTM layer, and output from this is considered 
the outcome of the hybrid algorithm. 

The GRU-RNN-LSTM combines GRU with typical RNNs and LSTMs. GRU, 
RNN, and LSTM effectively learn short- to long-term dependencies in the data (Ren 
et al., 2022). The input data is first transmitted to GRU, which generates output and 
is then fed into the RNN. Furthermore, the RNN output is input to the LSTM. The 
output from LSTM can be considered as the outcome of the hybrid algorithm. 

4.8 Boosting Algorithms 

The principle behind these techniques is to construct an ensemble of Decision Trees 
(DTs) to decrease the error. Three algorithms, namely, AdaBoost, XGBoost, and 
CatBoost are described in this section. 

4.8.1 Adaptive Boosting 

AdaBoost selects features to improve algorithm prediction. It makes an ensemble out 
of weak learners to increase performance (Aldrees et al., 2022; Ding et al., 2022). 
The hardness of each training dataset is given as input such that newly constructed 
trees group the tougher ones. Stump is one component in DT, and it is comprised of 
one node and two leaves. Some of these stumps have a more significant weightage in 
predicting data. Every succeeding stump corrects the errors of the previous stump. 
Lastly, the prediction is (Eqs. 4.22–4.23) 

H(x) = sign

(
T∑

t=1 

αtht(x))

)
(4.22) 

where 

αt = 
1 

2 
Log

(
1 − εt 

εt

)
(4.23) 

where ht(x) is the prediction by tth weak classifier, αt and  εt are the weight and 
fractions of misclassifications by the tth classifier. Here, the Log represents the natural 
logarithm. 

Each sample is given a weight, Dt(i). These are assumed to be equal initially, 
whose sum is unity. After each iteration, this sample weight is updated based on 
which samples were incorrectly classified. These are given a higher weight, which 
dictates that they are more likely to appear in the next iteration of the bootstrapped
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dataset. The bootstrap method estimates quantities regarding populations by aver-
aging estimates from smaller data samples. Specifically, the samples are created by 
selecting observations from a larger data sample and choosing them repeatedly. This 
way, a given observation can appear in a sample more than once. The feature that 
distinguishes the classes is selected as the first stump. Accordingly, the weightage 
of the stump is established on its accuracy. Classified sample weights are (Eq. 4.24) 

Dt+1(i) = Dt(i)e−αtyiht(xi)

∑
i Dt(i)e−αtyiht(xi) 

(4.24) 

Then, a newer dataset of identical size as the original is randomly chosen by 
repeating samples from the preceding dataset. Higher weightage samples will be 
selected more often. Then, another iteration is carried out on this bootstrapped dataset, 
and so on (Madhuri et al., 2021; Mishra et al., 2024). 

Numerical Problem 4.5. Classify the datasets presented in Table 4.3 using AdaBoost. 
Distance to Nearest Stream (DNS) and Evapotranspiration (ET) are features 
considered. Consider Gini impurity as an attribute selection measure. 

Solution: 

An AdaBoost tree is created in much the same way a DT is made. The difference is 
that AdaBoost uses stumps instead of full-blown DTs with several leaves. Consider 
the stump as an example. After splitting the data based on a given value, how well the 
condition splits the different data classes is noticed: positive class (+1) and negative 
class (−1). Here (Fig. 4.8), DNS of 5.2 as a divider correctly classifies five out of 
six flooded points [here, points and datasets are used interchangeably] and four out

Table 4.3 Dataset for the numerical problem 

Dataset DNS ET Did flood occur? Observed yi In terms of AdaBoost 
terminology 

1 2.4 10.2 No 0 −1 

2 12 5.4 Yes 1 1 

3 4.5 16 No 0 −1 

4 7.6 20.3 Yes 1 1 

5 9.3 14.5 Yes 1 1 

6 4.9 7.8 Yes 1 1 

7 8.1 14.2 No 0 −1 

8 4.3 4.5 Yes 1 1 

9 3.2 12.4 No 0 −1 

10 5.5 5.5 Yes 1 1 

11 7.2 11.2 Yes 1 1 

12 4.5 8.5 No 0 −1 
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Fig. 4.8 Tree constructed using DNS at a value of 5.2 

of six non-flooded points. In the left leaf, corresponding to Yes, it can be seen that 
five training examples are flooded, and one is not inundated despite being classified 
as flooded. 

Similarly, on the right leaf, four out of six non-flooded points are correctly clas-
sified as Yes, and two are incorrectly classified as No. Many such dividers can be 
examined to pick the one that best splits the classes. A node refers to collecting all the 
datasets, and the leaves are the two groups of datasets formed based on a comparison. 

Before the numerical problem begins, a recap of Gini Impurity is necessary. It is 
calculated to determine how well a specific node in a DT differentiates between the 
classes (flooded and non-flooded). For a given leaf, it is calculated as (Eq. 4.25) 

Gini impurity =
(
1 − (fraction of positive examples)2 − (fraction of negative examples)2

)

(4.25) 

Suppose a leaf has eight training examples that belong to the positive class and 
five training examples that belong to the negative class. In this case, the Gini impurity 
index is calculated as 

Gini impurity =
(
1 −

(
8 

5 + 8

)2 

−
(

5 

5 + 8

)2
)

= 0.473 

The weighted average of both leaves is taken to calculate the Gini impurity for 
a node and is performed to captivate the splitting efficiency of both leaves. If both 
leaves do an excellent job, their respective Gini impurities will be lower. Before 
constructing the first stump, each training example is assigned an equal weight, and 
the sum of the weights of all the training samples is 1 and can be placed next to the 
training data as a new column (Table 4.4).

The sample weight indicates how likely a given training example will be selected 
for the next tree that will be constructed; it does not impact the first tree built and
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Table 4.4 Initial sample weights and classes of the entire dataset 

Dataset DNS ET Flooded (1)/non-flooded (−1) 
yi 

Sample weight 

1 2.4 10.2 −1 1 
12 

2 12 5.4 1 1 
12 

3 4.5 16 −1 1 
12 

4 7.6 20.3 1 1 
12 

5 9.3 14.5 1 1 
12 

6 4.9 7.8 1 1 
12 

7 8.1 14.2 −1 1 
12 

8 4.3 4.5 1 1 
12 

9 3.2 12.4 −1 1 
12 

10 5.5 5.5 1 1 
12 

11 7.2 11.2 1 1 
12 

12 4.5 8.5 −1 1 
12

serves as a starting point. To begin the construction of the first stump, find out which 
of the two features, DNS or ET, separates the training example better. To do this, 
evaluate the Gini impurity of both features. Before that, decide at which point each 
feature will give the highest possible Gini impurity. To make this possible, arrange the 
values for each feature in ascending order and consider splitting the data at the mean 
of each pair of consecutive training examples. The means of each pair of consecutive 
training examples are given in the midpoint column, and the datasets are split using 
each value present in this column (Table 4.5).

Table 4.5 DNS in ascending 
order DNS yi Midpoint 

2.4 −1 

3.2 −1 2.8 

4.3 1 3.75 

4.5 −1 4.4 

4.5 −1 4.5 

4.9 1 4.7 

5.5 1 5.2 

7.2 1 6.35 

7.6 1 7.4 

8.1 −1 7.85 

9.3 1 8.7 

12 1 10.65
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Fig. 4.9 Tree constructed using midpoint DNS at a value of 4.7 

Take the example of the split made at midpoint 4.7 (refer to Fig. 4.9). There are 
five points with a DNS of less than 4.7 and seven points with a DNS greater than or 
equal to 4.7. The Gini impurity for each leaf can be computed.

Gini impurityleft =
(
1 −

(
6 

7

)2 

−
(
1 

7

)2
)

= 0.245 

Gini impurityright =
(
1 −

(
1 

5

)2 

−
(
4 

5

)2
)

= 0.320 

The Gini impurity for the node is the weighted average of the Gini impurities of 
both leaves. 

Gini impurityDNS=4.7 = 
0.245 × 7 + 0.320 × 5 

12
= 0.276 

Similarly, the Gini impurities are calculated at each midpoint for DNS (Table 4.6).
Midpoints 4.5 and 4.7 achieve the same lowest Gini impurity of 0.276. So, the 

Gini impurity corresponding to DNS is 0.276. The process is repeated for ET (refer 
to Fig. 4.10, Table 4.7):

Adding the calculation for the last row in Table 4.7 for clarity: 
The split is done at the ET value of 8.15 (vide Table 4.7). 

Gini impurityleft =
(
1 −

(
1 

1

)2
)

= 0
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Table 4.6 DNS in ascending order—Gini impurity 

DNS yi Midpoint Gini left Gini right Gini impurity 

2.4 −1 

3.2 −1 2.8 0.463 0.000 0.424 

4.3 1 3.75 0.420 0.000 0.350 

4.5 −1 4.4 0.444 0.444 0.444 

4.5 −1 4.5 0.245 0.320 0.276 

4.9 1 4.7 0.245 0.320 0.276 

5.5 1 5.2 0.278 0.444 0.361 

7.2 1 6.35 0.320 0.490 0.419 

7.6 1 7.4 0.375 0.500 0.458 

8.1 −1 7.85 0.444 0.494 0.481 

9.3 1 8.7 0.000 0.500 0.417 

12 1 10.65 0.000 0.496 0.455

Fig. 4.10 Tree constructed using DNS at ET of 8.15

(fraction of negative examples ignored since there are no negative examples) 

Gini impurityright =
(
1 −

(
6 

11

)2 

−
(

5 

11

)2
)

= 0.496 

Thus, taking the weighted average: 

Gini impurityET=18.15 = 
0 × 1 + 0.496 × 11 

12
= 0.455
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Table 4.7 ET in ascending order—Gini impurity 

ET yi Midpoint Gini left Gini right Gini impurity 

4.5 1 

5.4 1 4.95 0.496 0.000 0.455 

5.5 1 5.45 0.500 0.000 0.417 

7.8 1 6.65 0.494 0.000 0.370 

8.5 −1 8.15 0.469 0.000 0.313 

10.2 −1 9.35 0.490 0.320 0.419 

11.2 1 10.7 0.500 0.444 0.472 

12.4 −1 11.8 0.480 0.408 0.438 

14.2 −1 13.3 0.500 0.469 0.479 

14.5 1 14.35 0.444 0.494 0.481 

16 −1 15.25 0.500 0.480 0.483 

20.3 1 18.15 0.000 0.496 0.455

The best Gini impurity obtained when splitting the training examples using ET 
is 0.313 at a value of 8.15. Since DNS got a lower Gini impurity, it was decided 
to construct the first tree using DNS (DNS split at 4.7 has the lowest Gini impurity 
among the Gini impurities of both ET and DNS) (Fig. 4.11). 

The total error (εt) is the sum of the weights of the incorrectly classified samples. 
All the samples here have the same weight of 1 12 . 

It is understood that two of them are incorrectly classified since, on the left leaf, 
one training example is not a flooded point, and on the right leaf, one is a flooded 
point. The point DNS = 8.1 and ET = 14.2 fall to the left leaf (predicted flooded) but

Fig. 4.11 The first tree constructed using DNS at DNS = 4.7 
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are not flooded. The point DNS = 4.3 and ET = 4.5 fall to the right leaf (predicted 
non-flooded) but are flooded. Other than these two points, the rest are correctly 
classified. Thus, the total error εt = 1 

12 + 1 
12 = 1 6 . Then, the weight of this DT (or 

stump) is calculated as (refer to Eq. 4.23) 

αt = 
1 

2 
Log

(
1 − εt 

εt

)
= 

1 

2 
Log(5) = 0.805 

The notation for the classification of a training sample based on a single tree is 
ht(xi), where xi is the ith training example at tth tree. The procedure is as follows: 

(1) First, check the condition at the node (4.7 > 4.9), which is false; thus, move on 
to the leaf on the right side (corresponding to No). [4.7 is the value obtained to 
split the data since it had the least Gini impurity. Hence, comparing it with the 
DNS value of 4.9]. 

(2) The classification No refers to a class of −1; thus, the training example is 
classified as −1, which can be otherwise written as h1(x6) = −1. (x6 refers to 
the point DNS = 4.9 and ET = 7.8). Here h1(x6) refer to the first AdaBoost 
tree, and the subscript near x refers to the sixth training example. 

Now, update the sample weights based on how the initial classification was made 
using Eq. 4.24, where ht(xi) is the prediction by the tth DT of observation xi. Equa-
tion 4.24 carries out the reduction of the sample weight of accurately classified 
samples and the increase of the sample weight of inaccurately classified samples. If 
substituted with t = 1, it refers to the first iteration of AdaBoost: 

D2(i) = 
D1(i)e−α1yih1(xi)

∑
i D1(i)e−α1yih1(xi) 

The new sample weights are calculated using Eq. 4.24. Since the denominator is 
the same for all the samples, it is first calculated independently. D1(i) is assumed to 
be 1 

12 for all samples since this is the first AdaBoost tree constructed. α1 is already 
calculated as 0.805. 

For the leaf on the left in Fig. 4.9 (or even Fig. 4.11), six points are flooded (yi = +  
1) and classified as flooded (h1(xi) =+  1), thus contributing to the term 6e(−0.805×1×1). 
There is also one point that is not flooded (yi = −  1), but is classified as flooded 
(h1(xi) = +  1), thus contributing to the term e(−0.805×−1×1). For the leaf on the right 
in Fig. 4.8 (or even Fig. 4.10), four points are not flooded (yi = −  1) and classified 
as non-flooded (h1(xi) = −1), thus contributing to the term 4e(−0.805×−1×−1). There 
is also one point that is flooded (yi = +  1), but is classified as non-flooded (h1(xi) 
= −1), thus contributing to the term e(−0.805×1×−1). 

The denominator
∑
i 
Dt(i)e−αtyiht(xi) = 1 

12 [6e(−0.805×1×1) + e(−0.805×−1×1) + 

e(−0.805×1×−1) + 4e(−0.805×−1×−1). 
The 1 12 is the sample weight, D1(i) [first iteration and assumed weight], which is 

the same for all the samples at this stage. It is taken out as standard. In the first term,
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6e(−0.805×1×1) refers to the six examples in the left leaf which have been classified 
correctly, with a weight of the DT (α1) calculated as −0.805 using Eq. 4.23. The  
first one refers to y1, the class, and the second 1 refers to h1(x1). It is the class as 
predicted by the AdaBoost. Similarly, the other three terms are calculated. The above 
simplifies to 

1 

12 
[10 × 0.447 + 2 × 2.237] = 0.745 

After completion of the denominator (typical for all samples, i.e., 0.745), the 
numerator for each sample is calculated, and the new sample weight is updated 
accordingly (using Eq. 4.24). For instance, take the first example in Table 4.6. It has  
a DNS of 2.4, which, according to the constructed tree, is classified as No or −1, i.e., 
h1(x1) = −  1. It is also the corresponding label −1, i.e., yi = −  1, which means it 
is a non-flooded location. In h1(x1) = −  1, h1 refers to the first AdaBoost tree, and 
the subscript of x1 refers to the first training example. The −1 signifies that it has 
been predicted as non-flooded. 

D2(1) = D2(2) = D2(4) = D2(5) = 
1 
12 e

(−0.805×−1×−1) 

0.745
= 

1 
12 × 0.447 
0.745 

= 0.05 

The third example has a DNS value of 4.5, and according to our tree, it is classified 
as −1, i.e., h1(x3) = −  1. However, the corresponding label is + 1, i.e., yi = +  1. 
It means that our tree incorrectly classified a positive training example as negative. 
This training example is incorrectly classified, so its sample weight is duly increased. 

D2(3) = D2(8) = 
1 
12 e

(−0.805×1×−1) 

0.745
= 0.25 

Similarly, the rest of the sample weights are updated: 

D2(6) = D2(7) = D2(9) = D2(11) = D2(12) = 
1 
12 e

(−0.805×1×1) 

0.745
= 0.05 

D2(10) = 
1 
12 e

(−0.805×−1×1) 

0.745
= 

1 
12 × 2.237 
0.745 

= 0.25 

In addition, verify whether the newly updated weights add up to unity, which they 
do. The inference that can be made with the new weights is that correctly classified 
training examples have been given less weight (0.05). In comparison, the incorrectly 
classified training examples have been given a higher weight (25% chance). It ensures 
that more training examples must be correctly classified in the bootstrapped dataset. 

A dataset of the identical size as the original is constructed. The training examples 
in the new dataset are chosen randomly according to their new sample weights. 
Repetition of a training sample in the new dataset is allowed. Create another dataset
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of the identical size as the previous dataset of size 12. This new dataset is created by 
randomly choosing from the original dataset. The sample weight is the probability 
that a new dataset is selected from the old dataset. 

Whenever a new dataset is picked, two previously incorrectly classified training 
examples have a 25% chance of being selected. In comparison, the other training 
samples have a 5% chance. It is the first iteration of AdaBoost, and similarly multiple 
trees can be considered. The final prediction for each observation is predicted using 
Eq. 4.26: 

H(x) = sign

(
T∑

t=1 

αtht(x)

)
(4.26) 

where H(x) represents the final prediction and ht(x) are the predictions by individual 
trees. 

Use Eq. 4.26 to classify them if given an unseen test example. The below 
representation provides an idea of how unseen examples will be classified. 

For example, if the point is DNS = 5 and ET = 5, calculate the probability based 
on the first tree constructed using Eq. 4.26. 

H(x) = sign(0.805 ht(x)). 

Traverse  down  the tree in Fig.  4.11. The DNS of our point is greater than 4.7. 
Thus, this tree classifies it as flooded, ht(x) = +1. 

Therefore H(x) = sign( 0.805 × 1) = +  1. 
It means that our AdaBoost classifier of just one tree would classify it as positive, 

i.e., flooded. As a note, the classification of AdaBoost after 50 trees was constructed, 
which is generated using code (Fig. 4.12).

4.8.2 eXtreme Gradient Boosting 

XGBoost uses tree pruning to minimize the loss function using multiple weak learners 
(Osman et al., 2021; Wu et al., 2019). Examples are first classified such that identical 
residuals are in the same cluster and later then branched off (refer to Fig. 4.13). 
Detailed information about XGBoost is available from Madhuri et al. (2021), Mishra 
et al. (2024), Deb et al. (2024).

A similarity score is used as an attribute selection measure in this context and 
expressed (Eq. 4.27) as  

Similarity Score =
(∑

Residuali
)2

∑[
pi′ ×

(
1 − pi′

)] + λR 
(4.27)
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Fig. 4.12 Classification by AdaBoost after 50 trees were constructed (Red: Non-flooded; Blue: 
Flooded)

Here, λR is termed as the regularization parameter. pi
′ is the prior probability esti-

mated for the ith training example (i = 1, 2, 3, ..n) in that branch. Appropriate pi′ is 
assigned in the first iteration. The training examples are branched so that the infor-
mation gain is the maximum at each branch till it can reach a maximum number of 
branches of the given tree. This gain is computed as Eq. (4.28). 

Gain = Similarity ScoreLeft + Similarity ScoreRight − Similarity ScoreRoot (4.28) 

Cover (min_child_weight or minimal number of residuals in each leaf) is 
computed as

∑[
pi

′ × (
1 − pi′

)]
. The leaf is taken out if the cover is less than the 

minimum, and the tree (or branch) is pruned if the Tree Complexity Parameter (γ) is  
higher than the gain at a branch and is one form of regularization to make the process 
more generalized. Larger λR lower the gain, thereby making pruning flexible. Lastly, 
output values (w) for all leaves are expressed as (Eq. (4.29)) 

w =
∑

Residuali∑[
pi′ ×

(
1 − pi′

)] + λR 
(4.29) 

The probabilities are fine-tuned in terms of Log of odds or Log odds (Eq. 4.30):
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Fig. 4.13 Architecture of XGBoost (adapted from Deb et al., 2024 under CC BY 4.0 License)

log

(
p 

1 − p

)
= Log odds. (4.30) 

The inverse of Eq. 4.30 is also used. 
Another tree is added after each iteration. Accordingly, it is expressed as (Eq. 4.31) 

Log new odds = Log old odds 

+ Learning rate
(
Output Valuetree1 + Output Valuetree2 + · · ·  +  Output ValuetreeN

)

(4.31) 

It can be observed from Eq. 4.31 that the output values from several trees 
are considered together in updating the Log odds. The mechanism of calculating 
Log odds and output values is demonstrated in the numerical example 4.6. Eventually, 
XGBoost targets to minimize the objective function (Eq. 4.32): 

O
(
yi, pi, w

) = 
n∑

i=1 

L(yi, pi) + 
1 

2 
λRw

2 (4.32) 

where loss function, L
(
yi, pi

)
, is expressed in Eq. 4.33:
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L
(
yi, pi

) = [−yi log
(
pi

) + (
1 − yi

)
Log

(
1 − pi

)]
(4.33) 

Numerical Problem 4.6. Classify the datasets presented in Table 4.8 using XGBoost. 
Features considered are DNS and ET. The initial probability prediction for all values 
is 0.5, and the learning rate is 0.3. Employ similarity score as an attribute selection 
measure. 

Solution: 

The feature needs to be identified to initiate the construction of the tree. Like 
AdaBoost, arrange the values for each feature in ascending order and consider split-
ting the data at the mean of each pair of consecutive training examples. The initial 
probability prediction for all values is 0.5, on which the residuals can be calculated 
(Table 4.9).

Splitting of the data is needed to start constructing the tree. It can be done at several 
points. For example, based on ET, split the data at 8.15, which has four points less 
than it and eight points above it (8.15 is the mean of the consecutive ET values 7.8 
and 8.5). The middle point is constructed using these mean values (Table 4.10). The 
gain is calculated at each point where the data is split (based on the middle point). 
For example, split the tree at 9.35 (mean of 8.5 and 10.2). Before calculating the gain, 
the similarity scores of the root node (comprising of the residuals of all the data, left 
leaf and right leaf) can be computed. λR is assumed to be zero for demonstration 
purposes. The root node consists of all the points, whereas the left leaf consists of 
the points less than the threshold chosen, and the right leaf consists of the points 
more significant than the threshold.

Table 4.8 Datasets for the numerical problem 

Dataset DNS ET Did flood occur? Observed yi 

1 2.4 10.2 No 0 

2 12 5.4 Yes 1 

3 4.5 16 No 0 

4 7.6 20.3 Yes 1 

5 9.3 14.5 Yes 1 

6 4.9 7.8 Yes 1 

7 8.1 14.2 No 0 

8 4.3 4.5 Yes 1 

9 3.2 12.4 No 0 

10 5.5 5.5 Yes 1 

11 7.2 11.2 Yes 1 

12 4.5 8.5 No 0 
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Table 4.9 Residual probabilities and middle points of ET 

ET yi pi Residual 
yi -pi 

Middle point 

4.5 1 0.5 0.5 – 

5.4 1 0.5 0.5 4.95 

5.5 1 0.5 0.5 5.45 

7.8 1 0.5 0.5 6.65 

8.5 0 0.5 −0.5 8.15 

10.2 0 0.5 −0.5 9.35 

11.2 1 0.5 0.5 10.7 

12.4 0 0.5 −0.5 11.8 

14.2 0 0.5 −0.5 13.3 

14.5 1 0.5 0.5 14.35 

16 0 0.5 −0.5 15.25 

20.3 1 0.5 0.5 18.15

Similarity scoreRoot =
(∑

Residuali
)2

∑[
p′
i ×

(
1 − p′

i

)] + λR 

= 
(0.5 + 0.5 . . .  − 0.5 + 0.5)2 

12(0.5 × 0.5) + 0
= 0.333 

Similarity scoreLeft =
(∑

Residuali
)2

∑[
pi′ ×

(
1 − pi′

)] + λR 

= 
(0.5 + 0.5 + 0.5 + 0.5 − 0.5)2 

5(0.5 × 0.5) + 0
= 1.8 

Similarity scoreRight =
(∑

Residuali
)2

∑[
pi′ ×

(
1 − pi′

)] + λR 

= 
(−0.5 + 0.5 − 0.5 − 0.5 + 0.5 − 0.5 + 0.5)2 

7(0.5 × 0.5) + 0 
= 0.143

After calculating the similarity scores, the gain can be calculated using Eq. 4.28. 

Gain = Similarity ScoreLeft + Similarity ScoreRight − Similarity ScoreRoot 
= 1.8 + 0.143 − 0.334 = 1.609 

Similarly, the gain is calculated for both features at every point, as shown in 
Tables 4.10 and 4.11.
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Table 4.10 Gain values of the first branch for ET 

ET yi Middle Left score Right score Root Gain 

4.5 1 – – – – – 

5.4 1 4.95 1.000 0.091 0.333 0.758 

5.5 1 5.45 2.000 0.000 0.333 1.667 

7.8 1 6.65 3.000 0.111 0.333 2.778 

8.5 0 8.15 4.000 0.500 0.333 4.167 
(Highest gain) 

10.2 0 9.35 1.800 0.143 0.333 1.609 

11.2 1 10.7 0.667 0.000 0.333 0.333 

12.4 0 11.8 1.286 0.200 0.333 1.152 

14.2 0 13.3 0.500 0.000 0.333 0.167 

14.5 1 14.35 0.111 0.333 0.333 0.111 

16 0 15.25 0.400 0.000 0.333 0.067 

20.3 1 18.15 0.091 1.000 0.333 0.758

Table 4.11 Gain values of first branch for DNS 

DNS yi Middle Left score Right score Root Gain 

2.4 0 – – – – – 

3.2 0 2.8 1.000 0.818 0.333 1.485 

4.3 1 3.75 2.000 1.600 0.333 3.267 

4.5 0 4.4 0.333 1.000 0.333 1.000 

4.5 0 4.5 0.333 1.000 0.333 1.000 

4.9 1 4.7 1.800 3.571 0.333 5.038 
(Highest gain) 

5.5 1 5.2 0.667 2.667 0.333 3.000 

7.2 1 6.35 0.143 1.800 0.333 1.610 

7.6 1 7.4 0.000 1.000 0.333 0.667 

8.1 0 7.85 0.111 0.333 0.333 0.111 

9.3 1 8.7 0.000 2.000 0.333 1.667 

12 1 10.65 0.091 1.000 0.333 0.758 

The first tree is built using the split, which gives the highest gain at a DNS value 
of 4.7, with a gain of 5.038, and the residuals are split, as per Fig. 4.14.

The leaves created can be further divided (Table 4.12), similar to how they were 
separated earlier, based on a split that gives a maximum gain.

First, split the right leaf (arbitrarily). The points corresponding to the right leaf 
are given in Tables 4.13–4.16. The split at which the highest gain is obtained for 
these points is found by first calculating the gain at every possible split.
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Fig. 4.14 First branching of the tree (0.5 and −0.5 are the residuals; brackets denote the dataset 
number)

Table 4.12 Points belonging 
to the left leaf of the first 
branch 

DNS ET yi 

2.4 10.2 0 

4.5 16.0 0 

4.3 4.5 1 

3.2 12.4 0 

4.5 8.5 0

Table 4.13 Gain values of the second branch (ET) 

ET yi Middle value Left score Right score Root Gain 

4.5 1 – – – – – 

8.5 0 6.5 1.00 4.00 1.80 3.2 

10.2 0 9.35 0.00 3.00 1.80 1.2 

12.4 0 11.3 0.33 2.00 1.80 0.533 

16 0 14.2 1.00 1.00 1.80 0.2 

Table 4.14 Gain values of the second branch (DNS) 

DNS yi Middle value Left score Right score Root Gain 

2.4 0 – – – – – 

3.2 0 2.8 1.000 1.000 1.800 0.2 

4.3 1 3.75 2.000 0.333 1.800 0.533 

4.5 0 4.4 0.333 2.000 1.800 0.533 

4.5 0 4.5 0.333 2.000 1.800 0.533
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Table 4.15 Gain values of the third branch (ET) 

ET yi Middle value Left score Right score Root Gain 

5.4 1 – – – – – 

5.5 1 5.45 1.000 2.667 3.571 0.095 

7.8 1 6.65 2.000 1.800 3.571 0.229 

11.2 1 9.5 3.000 1.000 3.571 0.429 

14.2 0 12.7 4.000 0.333 3.571 0.762 

14.5 1 14.35 1.800 2.000 3.571 0.229 

20.3 1 17.4 2.667 1.000 3.571 0.095 

Table 4.16 Gain values of the third branch (DNS) 

DNS yi Middle value Left score Right score Root Gain 

4.9 1 – – – – – 

5.5 1 5.2 1.000 2.667 3.571 0.095 

7.2 1 6.35 2.000 1.800 3.571 0.229 

7.6 1 7.4 3.000 1.000 3.571 0.429 

8.1 0 7.85 4.000 0.333 3.571 0.762 

9.3 1 8.7 1.800 2.000 3.571 0.229 

12 1 10.65 2.667 1.000 3.571 0.095 

Fig. 4.15 Second branching of the tree

The split with the highest gain is made at an ET value of 6.5 (middle value), with a 
gain of 3.2. It is observed that similar residuals end up in the same leaves (Fig. 4.15). 
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Fig. 4.16 Complete branching of the tree 

The tree may also be expanded on the right leaf using the same procedure. Gain 
at each split is calculated as follows: 

It so happened that the one negative class (0) point (DNS: 8.7, ET: 14.5; dataset 
number 7) in this leaf occurs in the same place in ascending order for both features. It 
means that all the scores for both features will be the same. Thus, the gain calculated 
for both features is the same. Accordingly, DNS is arbitrarily picked. The split is 
made at a DNS value of 7.85, with a gain of 0.762 (Fig. 4.16). 

First, after going through the root node (which contained all the training exam-
ples), it is decided to split at DNS > 4.7 (at level 1). At this level, there are two leaves. 
The leaf on the left contains five training examples, and the leaf on the right contains 
7. It is found that the criterion by which both leaves could be split [ET > 6.5] and 
[DNS > 7.85]. After splitting both leaves one more time, the status is level 2. At this 
level, there are four leaves. It can be labelled as 1, 2, 3, and 4 from left to right. The 
branching stops when the maximum tree depth parameter is reached (here, it is 2). 

Each leaf in a total of four leaves is used to calculate its output value using Eq. 4.29. 
The output value of the first leaf is (dataset number: 8; residual is 0.5) 

w =
∑

Residuali∑[
pi′ ×

(
1 − pi′

)] + λR 
= 

0.5 

0.25 
= 2 

The output value of the second leaf is calculated as (dataset number: 1, 3, 9, 12; 
all residuals are −0.5) 

w =
∑

Residuali∑[
pi′ ×

(
1 − pi′

)] + λR 
= 

−0.5 − 0.5 − 0.5 − 0.5 
0.25 + 0.25 + 0.25 + 0.25 

= −2 

The output value of the third leaf is (dataset number: 4, 6, 10, 11; all residuals are 
0.5)
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w =
∑

Residuali∑[
pi′ ×

(
1 − pi′

)] + λR 
= 0.5 + 0.5 + 0.5 + 0.5 

0.25 + 0.25 + 0.25 + 0.25 
= 2 

The output value of the fourth leaf is (dataset number 2,5,7; residuals are −0.5, 
0.5, and 0.5) 

w =
∑

Residuali∑[
pi′ ×

(
1 − pi′

)] + λR 
= 

−0.5 + 0.5 + 0.5 
0.25 + 0.25 + 0.25 

= 0.667 

Now that the output values of each last leaf have been made, an update on the 
estimated probability can be made. This process is done in terms of Log odds of the 
probabilities. Equation 4.30 shows how Log odds are calculated. 

log

(
p 

1 − p

)
= Log odds 

Since the initial probability estimate of all the training points is 0.5, the Log odds 
of all the training points are log

(
0.5 
0.5

) = 0. The Log newodds are found by updating 
them with the output values and learning rate of 0.3 (Eq. 4.31). 

Log newodds = Log oldodds + Learning rate × Output Value 

Develop knowledge (Table 4.17) using the tree created (refer to Fig. 4.16) and 
assign an output value to each training example. Then, using the output value, the 
Log odds are calculated. Furthermore, these are converted back into the form of 
probability to receive the new estimates of the training examples using the following: 

Probability = eLog newodds 

1 + eLog newodds 
(4.34)

Table 4.17 presents the updated probabilities. Figure 4.17 illustrates the results 
after constructing 100 trees. It is noted that the newly predicted values are nearer to 
the actual class of each training example.

The procedure mentioned above is for the first tree. Other trees are also constructed 
by calculating new residuals using the newly estimated probability values. 

If the class of an unknown point is to be tested, it is run through all trees 
constructed, and using the output values given by each tree, the probability of the 
new point is found. The below representation provides an idea of how XGBoost will 
classify unseen examples. 

For example, if it was given the training point with DNS and ET values as 5.0, 
the process of how its value can be predicted using the first tree calculated can be 
visualized (Fig. 4.16). DNS > 4.7 computes to true, so move to the right leaf of the 
first level. DNS > 7.85 [in Table 4.16, the middle value of 7.6 and 8.1 is 7.85; hence 
it is chosen since it has the highest gain] computes to false, so move to the second 
level’s left leaf (labelled 3). The output value of the third leaf has been calculated as
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Table 4.17 Updated probabilities 

Dataset DNS ET yi pi Log old 
odds 

Leaves Output 
value 

Log new 
odds 

Updated 
probability pi 

1 2.4 10.2 0 0.5 0 2 −2 −0.6 0.354 

2 12 5.4 1 0.5 0 4 0.667 0.20 0.550 

3 4.5 16 0 0.5 0 2 −2 −0.6 0.354 

4 7.6 20.3 1 0.5 0 3 2 0.6 0.646 

5 9.3 14.5 1 0.5 0 4 −2 −0.6 0.354 

6 4.9 7.8 1 0.5 0 3 2 0.6 0.646 

7 8.1 14.2 0 0.5 0 4 0.667 0.20 0.550 

8 4.3 4.5 1 0.5 0 1 −2 −0.6 0.354 

9 3.2 12.4 0 0.5 0 2 −2 −0.6 0.354 

10 5.5 5.5 1 0.5 0 3 2 0.6 0.646 

11 7.2 11.2 1 0.5 0 3 2 0.6 0.646 

12 4.5 8.5 0 0.5 0 2 −2 −0.6 0.354

Fig. 4.17 XGBoost—results after construction of 100 trees (Red: Non-flooded; Blue: Flooded)

two, as shown above. Then, use Eq. 4.31 to update the probability from 0.5 to a new 
value. 

Log newodds = Log oldodds + Learning rate × Output Value
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Expanding each term here: 

Log newodds = log
(

0.5 

1 − 0.5

)
+ 0.3 × 2 = 0.6 

Then calculate the updated probability from the Log newodds Eq. (4.34) 

Probability = eLog newodds 

1 + eLog newodds 
= e0.6 

1 + e0.6 
= 0.645 

Thus, based on the first tree, the points DNS = 5 and ET = 5 are estimated to 
have a 0.645 chance of flood. 

4.8.3 Categorical Boosting 

CatBoost (Mehraein et al., 2022), a gradient boosting algorithm, is constructed on the 
iterative framework of AdaBoost with the incorporation of (a) target encoding and 
(b) gradient-based splitting (Fig. 4.18). Target encoding helps enhance the predictive 
ability of the model while decreasing the vulnerability to over-fitting. Complimen-
tarily, gradient-based splitting optimizes tree splits directly with reference to the 
gradient of the weighted error, leading to more efficient and accurate tree construc-
tion, especially on large datasets. Once the splits are identified, the iterative process 
is similar to that of AdaBoost (Mishra et al., 2024).

Other algorithms in the boosting category are LGBoost and NGBoost (Duan 
et al., 2020; Fan et al., 2019). Table 4.18 presents conceptual differences in Boosting 
Algorithms (Mishra et al., 2024). Readers are advised to go through the relevant 
sources to gain an adequate understanding of these algorithms.

Revision Questions and Exercise Problems 

4.1 Discuss the philosophy behind CNN. 
4.2 What are the filters that are commonly used in CNN? 
4.3 Explain the architecture of CNN. 
4.4 Explain the mathematical equation for the convolutional layer for ith data. 
4.5 What is the pooling layer? What is average and maximum pooling? 
4.6 What is the Softmax function layer? What is its use? 
4.7 What is loss function? How is it going to help the efficacy of the ML algorithm? 
4.8 What are the parameters governing CNN? According to you, which parameter 

has a significant effect on the efficacy of the algorithm? 
4.9 What are the purposes of the learning and dropout rates? Are they related? If 

so, how? 
4.10 Employ the CNN to establish a relationship between the input (traffic flow, 

lane length) and output (congestion level). Use the maximum pooling method.
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Fig. 4.18 Tree formation in CatBoost (adapted from Mishra et al., 2024 under CC BY-NC-ND 4.0 
License)

Table 4.18 Conceptual differences in boosting algorithms (adapted from Mishra et al., 2024 under 
CC BY-NC-ND 4.0 License) 

Features Algorithms 

AdaBoost CatBoost LGBoost NGBoost XGBoost 

Formation of 
decision tree 

Asymmetric 
level-wise 

Symmetric 
level-wise 
growth 

Asymmetric 
leaf-wise 
growth 

Level-wise 
growth 

Depth-wise 
growth 

Splitting metliod Greedy 
splitting 
method 

Greedy 
splitting 
method 

Gradient-
based 
One-Side 
sampling 

Natural 
gradient 

Histogram 
based 

Handling 
categorical 
features 

No Yes No No No 

Regularization No Yes Yes Yes Yes 

Memory 
consumption 

Low High Low High Moderate 

Feature 
importance 

Available Available Available Available Available 

Scalability Fast Moderate Fast Low Fast
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x1 x2 D 

8 4 0.75 

12 8 1.00 

4.11 What is RNN? Explain briefly the mathematics behind the same. 
4.12 What is the disadvantage of RNN that prompted the usage of LSTM? 
4.13 What is the architecture of LSTM? Explain the mathematical philosophy in 

detail. 
4.14 How can LSTM exploration be utilized to capture long-term dependencies? 
4.15 What is the meaning of signal in LSTM? 
4.16 What are input, forget, and output gates? How do they differ in their 

functionality? 
4.17 What are final, new memory, and hidden cells? How do they differ in their 

functionality? 
4.18 What is the purpose of using the tanh function at the output gate of an LSTM? 
4.19 What are the parameters of LSTM? Mention them with their specific 

purpose. Which parameter significantly affects the outcome? Similarly, which 
parameter has the most negligible influence on the outcome? 

4.20 What is the physical meaning of weights in LSTM? 
4.21 The problem is related to eye movement recognition. Here, the input is skin 

temperature, xt = (5,6,7), and output is eye movement, yt = (2,3,4). Apply 
LSTM with three hidden units, λt−1 = (1,2,3) and μt−1 = (5,5,5). Assume the 
weights and parameters suitably. 

4.22 What is the mathematical basis of GRU? Is it simpler than LSTM? If so, discuss 
in what aspects? 

4.23 What is the meaning of hybridization in ML algorithms? Do you think it will 
improve performance compared to the individual algorithms? 

4.24 What is the meaning of boosting in the ML framework? 
4.25 Mention the names of three boosting algorithms. Compare them with three 

salient features. 
4.26 What is the meaning of correctly and incorrectly classified samples in boosting 

algorithms? How are they going to affect the quality of output? 
4.27 What is the meaning of a bootstrapped sampling? 
4.28 What is Gini impurity? Can it have a value greater than 1? 
4.29 A leaf has ten training examples that belong to the positive class (1) and six 

training examples that belong to the negative class (−1). Assume suitable data, 
if any compute Gini Index. 

4.30 Is lower Gini impurity preferred or higher? Why? 
4.31 What is the purpose of middle values in boosting-related problems? On what 

basis can the weighted average of the Gini impurities be computed?
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4.32 Mention one distinct advantage and disadvantage in AdaBoost that affects the 
accuracy of the outcome. What possible extensions can be explored to make 
the algorithm more robust? 

4.33 What are the residuals in XGBoost? 
4.34 What is a similarity score and regularization parameter? 
4.35 What is information gain, and how is it related to similarity scores? 
4.36 What is the Tree Complexity Parameter? 
4.37 What is the Logodds ? Is it related to probability? If yes, how is it related? If 

the Logodds is 0.8, what is the probability? 
4.38 What are the objective functions of boosting algorithms? 
4.39 Mention one distinct advantage and disadvantage in XGBoost that affects the 

accuracy of the outcome. 
4.40 What possible extensions can be explored to make the boosting algorithms 

more robust? 
4.41 The problem is related to the stability of the foundation. Two features 

are considered: effective vertical stresses and earthquake magnitude. Seven 
different locations are the datasets. Classify the datasets using AdaBoost and 
XGBoost (refer to Table 4.19). 

Advanced Review Questions

4.42 Can you explore pooling methods other than average and maximum pooling? 
If yes, how are they better than average pooling? 

4.43 What is the physical significance of the height and width of filters in CNN? 
4.44 What is meant by dense vector? What is the physical meaning of weights and 

biases of dense vectors? 
4.45 What is the purpose of termination criteria? Mention different types that can 

be explored. 
4.46 How do epochs impact the learning and dropout rates? Can any relationship 

be established in this regard? 
4.47 Is hyperparameter tuning necessary for improving the efficacy of algorithms? 

Do you think the computational burden will increase with hyperparameter 
tuning?

Table 4.19 Information about features and foundation status 

Dataset Effective vertical stresses Earthquake magnitude yi Is foundation safe? 

1 2.8 10.8 1 Yes 

2 12.6 5.8 0 No 

3 4.8 16.8 1 Yes 

4 7.8 20.8 0 No 

5 9.9 14.8 1 Yes 

6 6.9 8.8 0 No 

7 8.8 16.2 0 No 
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4.48 Is the hybridization of CNN and LSTM the same as that of LSTM and CNN? 
Can you elaborate on the same? In that case, how may architecture be changed? 

4.49 How to determine optimum values in the case of support vector regression? 
4.50 Can you suggest further hybridizations between ML algorithms (besides those 

mentioned in this chapter)? If so, cite the basis of the same and the logical 
advantages of the same over the standalone algorithms. 

4.51 What is meant by bias? Does boosting algorithms reduce bias? 
4.52 Is using the learning rate in gradient boosting essential to get an optimum 

output? Elaboration is suggested. 
4.53 Can you develop a boosting algorithm that simultaneously minimizes compu-

tational complexity and facilitates accurate predictions? 
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Chapter 5 
Fuzzy-Based Modelling Algorithms 

5.1 Introduction 

The chapter provides an insight into fuzzy logic-based approaches, namely, Fuzzifica-
tion and Defuzzification, Adaptive Neuro-Fuzzy Inference System (ANFIS), Fuzzy 
Cognitive Mapping (FCM), Optimization, and its fuzzy extension. This chapter also 
briefly discusses Fuzzy CNN and Fuzzy LSTM. 

5.2 Fuzzification and Defuzzification 

Crisp logic deals with conventional situations involving binary decisions. Exam-
ples include occurrence or non-occurrence and satisfactory or unsatisfactory. These 
decision-making situations are uncommon in real-world problems may be due to 
imprecise information. If information of this nature is used as input, the model 
may yield imprecise outputs (refer to Fig. 5.1); for example, in Water Distribution 
Networks (WDN), uncertainties associated with the cost of pipes, leakages, available 
heads, pipe roughness, etc., impact the design.

Fuzzy logic is viable for considering uncertainty through membership functions 
(MF). This process is called fuzzification (Shruti & Deka, 2020; Vasan et al., 2022). In 
contrast, defuzzification translates the vague form into a crisp one. Related discussion 
is as follows. 

Two categories of MF exist for fuzzification purposes, i.e., (i) non-decreasing 
infers more the better and (ii) non-increasing infers less the better. The application 
generally guides the shape of MF. Information about selected MFs, namely, non-
linear, hyperbolic, and exponential for two categories, along with related equations, 
are presented respectively in Figs. 5.2a, b, 5.3a, b, and 5.4a, b. Here, Z represents
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Fig. 5.1 Sources of uncertainty and their impact on output

the objective function, ZL, and ZU are the lowest and highest tolerance levels Z can 
attain (Vasan et al., 2022). Also, Fig. 5.5a, b presents the triangular and trapezoidal-
shaped MFs (for the non-decreasing category), which are simple to understand and 
easy to interpret. 

Several approaches exist for defuzzification. Some of them are weighted average 
and centre of gravity (Ross, 2021). Here, the centre of gravity is explained briefly 
due to its flexibility, which caters to most situations. The mathematical basis of the 
centre of gravity is (Eq. 5.1) 

Z∗ = 
∫Z 
0 μz(X )zdz 

∫z 
0 μz(X )dz 

(5.1)

Fig. 5.2 a, b. Non-linear MF (Modified and adapted from Vasan et al., (2022) under CC BY-NC-ND 
4.0 License)
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Fig. 5.3 a and b. Hyperbolic MF (Modified and adapted from Vasan et al., (2022) under CC 
BY-NC-ND 4.0 License) 

Fig. 5.4 a, b Exponential MF (Modified and adapted from Vasan et al., (2022) under CC BY-NC-
ND 4.0 License)
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Fig. 5.5 MF and corresponding equation for a triangular and b trapezoidal

Here, μz(X ) represents the equation of MF for the chosen line, and the defuzzified 
value is Z∗. 

Numerical Problem 5.1. Rainfall measured using a non-recording rain gauge is 
20 mm. However, after cross-verification, an error of 10% was found. Fuzzify rain 
gauge reading to account for this error in the triangular MF framework. 

Solution: 

The measured rainfall is 20 mm. 
The percentage of error is 10, i.e., 0.1. 
Error = 20 mm × 0.1 = 2 mm. 
In this context, the lowest and highest readings that are possible are 18 mm (20–2) 

and 22 mm (20 + 2) (refer to Fig. 5.6).
In triangular MF, 20 mm is most likely, with a membership value of 1 (or even 

less in some cases, depending on the perception of the expert). 

Numerical Problem 5.2. In an educational institution, students participate in several 
academic and non-academic activities. The institute may use student participation 
data to facilitate their career progression opportunities. Students with a rating score 
of 20 or less cannot be considered for career progression opportunities. Students 
above 20 and below 50 are eligible for opportunities in average category companies, 
whereas those above 50 and below 80 are eligible for good companies. Students with 
scores above 80 will be considered for the best companies. Present the data in the 
stepped MF framework. Assume supplementary data wherever applicable.
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Fig. 5.6 Triangular MF for the rainfall

Solution: 

It is assumed that a person with a 20-rating score or less can be given a 0.1 member-
ship value, as they made some effort. However, they will not be eligible for career 
progression opportunities. A membership value of 0.4 is proposed for those above 
20 and below 50 rating scores; its value is 0.7 for those above 50 and below 80 rating 
scores; it is suggested to be 0.9 for those above 80 (refer to Fig. 5.7).

Numerical Problem 5.3. The expert wants to understand the workability of the 
machines in a factory. Machines working below 10 h are considered non-productive, 
and machines working beyond 50 h are exceptionally productive. Draw a non-
linear MF with a membership value of 0.1 for non-productive and 1 for remarkably 
productive. You can also provide linguistic ratings in between, such as moderately 
productive, and represent it on the plot. 

Solution: 

Machines working less than 10 h are non-productive and are assigned a value of 0.1. 
The logic is that it serves but does not meet the expectations of the expert. Machine 
working 50 h and beyond is termed exceptionally productive. Hence, a membership 
value of 1 is given. Here, consider 30 h for moderate productivity. You can also see 
this information in the plot (Fig. 5.8).

Numerical Problem 5.4. The Air Quality Index (AQI) measures pollution levels. 
An AQI of 100 or less is considered satisfactory, whereas an AQI of above 100 is 
considered not advisable. Draw a suitable MF based on your perception. 

Solution: 

AQI of 100 or less is considered satisfactory and can be given a membership value 
of 1. However, beyond 100, it is not advisable. Accordingly, a non-linear MF was



128 5 Fuzzy-Based Modelling Algorithms

Fig. 5.7 Stepped MF for the rating score of students

proposed. With the increase in AQI, membership value is decreasing, representing 
not advisable [refer to Fig. 5.9].

Numerical Problem 5.5. Formulate non-decreasing exponential and hyperbolic MF 
in utilizing wireless sensors effectively in a highway project. The highest and lowest 
time sensors that can be used are 200 and 100 h. Take the value of S as 0.5.
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Fig. 5.8 Non-linear MF for the working hours of the machine

Fig. 5.9 Non-linear MF for the AQI
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Solution: 

Exponential MF 

μZ (X ) = 

⎡ 

⎣e
−S

(
ZU −Z 
ZU −ZL

)
− e−S 

1 − e−S 

⎤ 

⎦; ZL ≤ Z ≤ ZU 

μZ (X ) =
[
e−0.5( 200−Z 

200−100 ) − e−0.5 

1 − e−0.5

]
= 2.5415

[
e( 

z−200 
200 ) − 0.6065

]
. 

Hyperbolic MF 

μZ (X ) = 
1 

2 
tanh

[(
Z − 

ZU + ZL 
2

)
× 6 

ZU − ZL

]
+ 

1 

2
; ZL ≤ Z ≤ ZU 

= 
1 

2 
tanh

[(
Z − 

200 + 100 
2

)
× 6 

200 − 100

]
+ 

1 

2 
= 

1 

2 
tanh(0.06z − 9) + 0.5 

5.3 Adaptive Neuro-Fuzzy Inference System 

ANFIS simultaneously utilizes ANN and Fuzzy Inference System (FIS) (Alawad 
et al., 2020; Karaboga & Kaya, 2019; Larrea et al.,  2021; Sada & Ikpeseni, 2021). 
It facilitates non-linear relationships, quick learning capability, adaptive inferences, 
and effectively handles noisy and inconsistent data. It collects expert knowledge and 
system-specific information that can be used to create fuzzy rules and MFs. Further, 
it can provide an excellent initial approximation, improving the overall performance. 

Takagi–Sugeno, a type 3 FIS (Takagi & Sugeno, 1985), is used for demonstra-
tion where outputs are a linear combination of constant and input variables. Lastly, 
the weighted average of each rule outcome is determined. IF–THEN rules can be 
visualized as follows. 

Rule 1: IF x is A1 AND y is B1 (antecedents), THEN f1 = k1x+l1y+m1 (consequent). 

Rule 2: IF x is A2 AND y is B2 (antecedents), THEN f2 = k2x+l2y+m2 (consequent). 

Where x and y are the inputs in the crisp set, Ai and Bi are the linguistic labels, ki and li 
are consequent parameters, mi is a constant, and fi represents output MF. The typical 
architecture of standard ANFIS is presented in Fig. 5.10. It comprises five layers of 
interconnected nodes and the related discussion is explained below.
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Fig. 5.10 ANFIS architecture for two features, x and y [1, 2, 3, 4, 5 are layers denoting MF, 
Multiplication, Normalization, Rule Functions, Summation] 

Layer 1 (Fuzzification layer): Its primary role is determining the level to which a crisp 
input variable corresponds to a specific MF. Each node in this layer is a square shape 
(characterized by an adaptive node), and its output is expressed as (Eqs. 5.2–5.3): 

Op1 i = μAi (x); i = 1, 2 (5.2)  

Op1 i = μBi (y); i = 3, 4 (5.3) 

Here Op1 i is the output from the first layer; μAi (x), μBi (y) are MF, respectively, for 
fuzzy sets Ai and Bi. The only condition is that, μAi (x), μBi (y) be continuous and 
piecewise differentiable. Changing the premise parameter would result in a different 
curve for the MF. The general shapes of MF are Gaussian, Trapezoidal, or Triangular. 
A typical Gaussian equation is presented (Eq. 5.4). 

μAi (x) = e− 1 
2 ( x−c 

a )
2 

Generalized Gaussian curve (5.4) 

Here, a and c are the standard deviation and mean, respectively. 

Layer 2 (Multiplication layer): Here, nodes comprise the product of the weight of 
the premise parameters. It has a circle node (representing fixed node), and its output 
is expressed as (Eq. 5.5): 

Op2 i = ωi = μAi (x) × μBi (y) (5.5) 

ωi is firing strength of ith rule. Op2 i represents the output of the second layer.
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Layer 3 (Normalization layer): The mathematical representation of weight normal-
ization, ωN 

i is (Eq. 5.6): 

Op3 i = ωN 
i = 

ωi

�ωi 
(5.6) 

where, Op3 i represents the output of the third layer. 

Layer 4 (Defuzzification layer): It converts fuzzy information into crisp information 
using a defuzzification process. It consists of square nodes, and the resulting output 
is characterized as (Eq. 5.7). 

Op4 i = ωN 
i fi (5.7) 

where, Op4 i represents the output of the fourth layer. 

Layer 5 (Output layer): This process can be mathematically described as (Eq. 5.8). 

Op5 i =
∑
i 

ωN 
i fi (5.8) 

where, Op5 i represents the output of the fifth layer. 
Consequent parameters are improved (with fixed antecedent parameters) all along 

the forward movement, and the end output is determined. Later, the discrepancy is 
back propagated to the first layer, and the antecedent parameters can be improved 
using the chain rule (with fixed consequent parameters). Learning rate, dropout rate, 
batch size, epochs, and shape of MF are a few parameters that govern the ANFIS 
mechanism. 

Chopra et al. (2021) critically summarized the advantages and disadvantages 
of ANFIS. High computational time, handling a considerable size of inputs (more 
than five), and large datasets are some challenges that affect the performance of 
ANFIS. Over-fitting can occur in ANFIS if the neural network component is not 
correctly regularized. These may require regularization methods such as weight decay 
and dropout. Another possibility is to explore evolutionary algorithms for training 
ANFIS. The workings of ANFIS are demonstrated using numerical problems. 

Numerical Problem 5.6. The problem consists of inputs, Intelligence Quotient (IQ), 
and Leave in Days (LD). Output is Yield (Y). Data are presented in Table 5.1. Analyze 
the problem in the ANFIS framework.

Solution: 

All the data are assumed to be normalized. Low and high linguistic levels are proposed 
for each input feature. Accordingly, four rules are formulated.
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Table 5.1 Dataset used for 
ANFIS analysis Dataset IQ LD Y 

1 104 2 4500 

2 120 2 6000 

3 134 1 7500 

4 128 1 7000 

5 130 2 6500 

6 120 3 5500 

7 110 2 5000 

8 100 7 3500 

9 110 3 4000

Rule R1: IF IQ is high AND LD is high, THEN Y is 35×IQ−100×LD+1000. 
Rule R2: IF IQ is high AND LD is low, THEN Y is 45 × IQ− 450× LD+ 2000. 
Rule R3: IF IQ is low AND LD is low, THEN Y is 35× IQ− 500× LD+ 2000. 
Rule R4: IF IQ is low AND LD is high, THEN Y is 30× IQ− 100× LD+ 1000. 

For the convenience of the readers, high and low are denoted as H and L. Accord-
ingly, IQ high, IQ low, LD high, and LD low are now termed as IQH , IQL, LDH , 
and LDL, respectively. 

Defining Gaussian MF: e− 1 
2 ( x−c 

a )
2 

with basic parameters for four linguistic ratings 

• IQL : mean c = 105; standard deviation a = 10. 
• IQH : c and a are 130 and 10. 
• LDL : c and a are 1 and 2. 
• LDH : c and a are 6 and 2. 

Demonstration of ANFIS was done in detail for rule R1 and dataset 1 for better 
understanding to the reader. All the results are presented in Tables 5.2, 5.3 and 5.4 
for a comprehensive analysis of the numerical problem. 

Layer 1: Calculating the membership values for each input of the dataset 

Membership value for input (IQ value of 104) for linguistic rating high (with c and 

a are 130 and 10) is e− 1 
2 ( x−c 

a )
2 = e− 1 

2 ( 104−130 
10 )

2 = 0.034. 
Similarly, the membership values for the remaining elements are computed based 

on the Gaussian MF. These values for both features are shown in Table 5.2 (columns 
3–4 for IQ & 6–7 for LD).

Layer 2: Firing strength of each rule 

Firing strength of rule R1 for dataset 1: Membership of IQH multiplied by the 
membership of LDH . Here, F and M are represented for firing and MF value. 

F(IQH , LDH ) = M (IQH ) × M (LDH ) = 0.0340 × 0.1353 = 0.0046
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Table 5.2 Membership values for IQ and LD for each dataset 

Dataset 
(1) 

Given 
Value 
(2) 

IQH 
(3) 

IQL 
(4) 

Given 
Value 
(5) 

LDH 
(6) 

LDL 
(7) 

1 104 0.0340 0.9950 2 0.1353 0.8825 

2 120 0.6065 0.3247 2 0.1353 0.8825 

3 134 0.9231 0.0149 1 0.0439 1.0000 

4 128 0.9802 0.0710 1 0.0439 1.0000 

5 130 1.0000 0.0439 2 0.1353 0.8825 

6 120 0.6065 0.3247 3 0.3247 0.6065 

7 110 0.1353 0.8825 2 0.1353 0.8825 

8 100 0.0111 0.8825 7 0.8825 0.0111 

9 110 0.1353 0.8825 3 0.3247 0.6065

Table 5.3 shows the firing strengths of each rule and each dataset (columns 2–5, 
respectively, for each rule). 

Layer 3: Computation of normalized firing strength of rule R1 for dataset 1 

N (IQH , LDH ) = F(IQH , LDH )∑u=H 
u=L

∑v=H 
v=L F(IQu, LDv) 

= 0.0046 

0.0046 + 0.0300 + 0.8781 + 0.1346 
= 0.0044 

Here, N represents normalization.

Table 5.3 Firing strengths of each rule for each dataset 

Dataset 
(1) 

IQH ,LDH 
(Rule R1) 
(2) 

IQH ,LDL 
(Rule R2) 
(3) 

IQL,LDL 
(Rule R3) 
(4) 

IQL,LDH 
(Rule R4) 
(5) 

1 0.0046 0.0300 0.8781 0.1346 

2 0.0821 0.5352 0.2865 0.0439 

3 0.0405 0.9231 0.0149 0.0007 

4 0.0430 0.9802 0.0710 0.0031 

5 0.1353 0.8825 0.0387 0.0059 

6 0.1969 0.3678 0.1969 0.1054 

7 0.0183 0.1194 0.7788 0.1194 

8 0.0098 0.0001 0.0098 0.7788 

9 0.0439 0.0821 0.5352 0.2865 
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Table 5.4 Normalized firing strength of each rule for each dataset 

Dataset 
(1) 

IQH ,LDH 
(Rule R1) 
(2) 

IQH ,LDL 
(Rule R2) 
(3) 

IQL,LDL 
(Rule R3) 
(4) 

IQL,LDH 
(Rule R4) 
(5) 

1 0.0044 0.0286 0.8384 0.1285 

2 0.0866 0.5647 0.3023 0.0463 

3 0.0414 0.9427 0.0152 0.0007 

4 0.0392 0.8933 0.0647 0.0028 

5 0.1274 0.8307 0.0364 0.0056 

6 0.2271 0.4242 0.2271 0.1216 

7 0.0177 0.1153 0.7518 0.1153 

8 0.0123 0.0001 0.0123 0.9753 

9 0.0463 0.0866 0.5647 0.3023 

Table 5.4 shows the normalized firing strengths of each rule and each dataset 
(columns 2–5, respectively, for each rule) 

Layer 4: Multiplying the firing strength of each rule with the corresponding 
consequent part of that rule: 

Op(IQH , LDH ) =N (IQH , LDH ) × Consequent(IQH , LDH ) 
= 0.0044 × (35 × IQH − 100 × LDH + 1000) 
= 0.0044 × (35 × 104 − 100 × 2 + 1000) 
= 19.54 

Layer 5: Summing up the predicted value Op from each rule and each dataset to get 
the final predicted output P and presented in Table 5.5 (columns 2–5 for prediction 
output for each rule). The total predicted output is given in column 6 of Table 5.5, 
whereas observed output and discrepancy are shown in columns 7 and 8.

P = 
u=H∑
u=L 

v=H∑
v=L 

Op(IQu, LDv) = 19.54 + 165.31 + 3890.18 + 503.72 = 4578.75 

Numerical Problem 5.7. Engine Power (EP) and Miles Per Gallon (MPG) are 
influencing Fuel Consumption (FC) (Table 5.6). Analyze the problem in the ANFIS 
framework.
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Table 5.5 Predicted outputs for each rule and each dataset 

Dataset 
(1) 

IQH ,LDH 
(Rule R1) 
(2) 

IQH ,LDL 
(Rule R2) 
(3) 

IQL,LDL 
(Rule 
R3) 
(4) 

IQL,LDH 
(Rule R4) 
(5) 

Predicted 
output 
considering 
all rules P 
(6) 

Observed 
output 
O 
(7) 

Discrepancy 
(observed–predicted) 
(8) 

1 19.54 165.31 3890.18 503.72 4578.75 4500 −78.75 

2 433.00 3670.55 1571.96 203.72 5879.23 6000 120.77 

3 231.43 7145.67 94.09 3.44 7474.63 7500 25.37 

4 210.90 6530.02 386.91 13.27 7141.1 7000 −141.1 

5 681.59 5773.37 202.02 26.32 6683.3 6500 −183.3 

6 1112.79 2566.41 1067.37 522.88 5269.45 5500 230.55 

7 82.31 697.57 3646.23 472.73 4898.84 5000 101.16 

8 46.74 0.34 24.60 3218.49 3290.17 3500 209.83 

9 210.67 484.96 2456.45 1209.20 4361.28 4000 −361.28

Table 5.6 Dataset with two 
inputs and one output Dataset EP MPG FC 

1 150 30 3100 

2 120 25 400 

3 180 20 6000 

4 130 28 1500 

5 110 22 200 

6 90 18 10 

7 200 22 6000 

8 160 25 4000 

9 120 15 750 

Solution: 

All the data are assumed to be normalized. Low and high linguistic levels are proposed 
for each input. Accordingly, four rules are formulated. 

Rule R1: IF EP is high AND MPG is high, THEN FC is 35×EP−50×MPG+500. 
Rule R2: IF EP is high AND MPG is low, THEN FC is 40× EP −150× MPG + 
2000. 
Rule R3: IF EP is low AND MPG is low, THEN FC is 30 ×EP − 100 × MPG + 
1500. 
Rule R4: IF EP is low AND MPG is high, THEN FC is 25×EP−50×MPG+800. 

For the convenience of the readers, high and low are denoted as H and L. Accord-
ingly, EP high, EP low, MPG high and MPG low are now termed as EPH , EPL, 
MPGH and MPGL, respectively. 
Defining Gaussian MF: e− 1 

2 ( x−c 
a )

2 

with basic parameters for four linguistic ratings.
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• EPH : mean c = 160; standard deviation a = 20. 
• EPL : c and a are 120 and 20. 
• MPGH : c and a are 25 and 5. 
• MPGL : c and a are 18 and 5. 

All the results are presented in Tables 5.7, 5.8 and 5.9 for a comprehensive analysis 
of the numerical problem. 

Layer 1: Calculating the membership values for each input of the dataset 

Membership values for both inputs are shown in Table 5.7 (columns 3–4 for EP and 
6–7 for MPG). 

Layer 2: Firing strength of each rule 

Table 5.8 shows the firing strengths of each rule for each dataset (columns 2–5, 
respectively, for each rule).

Layer 3: Computation of normalized firing strength. 

Table 5.9 shows the normalized firing strengths of each rule for each dataset (columns 
2–5, respectively, for each rule).

Layer 4: Multiplying the firing strength of each rule with the corresponding 
consequential part of that rule 

Predicted outputs for each rule and each dataset are shown in Table 5.10 (columns 
2–5).

Layer 5: Summing up the predicted value from each rule for each dataset to get the 
final predicted output. 

The total predicted output P is presented in column 6 of Table 5.10, whereas observed 
output O and discrepancy are shown in columns 7 and 8. In the present case, as higher

Table 5.7 Membership values for EP and MPG for each dataset 

Dataset 
(1) 

Given value 
(2) 

EPH 
(3) 

EPL 
(4) 

Given value 
(5) 

MPGH 
(6) 

MPGL 
(7) 

1 150 0.8825 0.3247 30 0.6065 0.056 

2 120 0.1353 1 25 1 0.3753 

3 180 0.6065 0.011 20 0.6065 0.9231 

4 130 0.3247 0.8825 28 0.8353 0.1353 

5 110 0.044 0.8825 22 0.8353 0.7261 

6 90 0.00219 0.3247 18 0.3753 1 

7 200 0.1353 0.00034 22 0.8353 0.7261 

8 160 1 0.1353 25 1 0.3753 

9 120 0.1353 1 15 0.1353 0.8353 
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Table 5.8 Firing strengths of each rule for each dataset 

Dataset 
(1) 

EPH ,MPGH 
(Rule R1) 
(2) 

EPH ,MPGL 
(Rule R2) 
(3) 

EPL,MPGL 
(Rule R3) 
(4) 

EPL,MPGH 
(Rule R4) 
(5) 

1 0.5352 0.04942 0.0182 0.197 

2 0.1353 0.05078 0.3753 1 

3 0.3678 0.56 0.0102 0.0067 

4 0.2712 0.044 0.1194 0.7372 

5 0.0368 0.032 0.6408 0.7372 

6 0.000822 0.00219 0.3247 0.1219 

7 0.113 0.0982 0.000247 0.000284 

8 1 0.3753 0.05078 0.1353 

9 0.0183 0.113 0.8353 0.1353

Table 5.9 Normalized firing strength of each rule for each dataset 

Dataset 
(1) 

EPH ,MPGH 
(Rule R1) 
(2) 

EPH ,MPGL 
(Rule R2) 
(3) 

EPL,MPGL 
(Rule R3) 
(4) 

EPL,MPGH 
(Rule R4) 
(5) 

1 0.6692 0.0618 0.02276 0.2463 

2 0.0867 0.0325 0.2404 0.6405 

3 0.3893 0.5928 0.0108 0.0071 

4 0.2314 0.0375 0.1019 0.6291 

5 0.0254 0.0221 0.4429 0.5095 

6 0.0018 0.0049 0.7222 0.2711 

7 0.5337 0.4638 0.0012 0.0013 

8 0.6405 0.2404 0.0325 0.0867 

9 0.0166 0.1026 0.7581 0.1228

discrepancy values are observed, the process must be continued by changing the MF, 
rules, and consequent equations until a satisfactory solution is achieved. 

5.4 Fuzzy Cognitive Mapping 

FCM is an approach that denotes expert knowledge in a graphical network format. 
Nodes characterize concepts. Links symbolize association between concepts. They 
are instrumental in formulating the concepts and their interconnections of the edges 
between the nodes (Bakhtavar et al., 2021; Khanzadi et al., 2018; Papageorgiou & 
Salmeron, 2013). Explanation of type of relationships with two concepts, COi
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and COj, and the weight of interconnection between them, ωij, are presented in 
Table 5.11. Related details are also presented in Fig. 5.11. 

Activation level Ali for each concept COi is estimated using the association 
(Eq. 5.9). 

Alr+1 
i = f 

⎛ 

⎝Alr i + 
N∑

i=1,i �=j 

ωjiAl
r 
j 

⎞ 

⎠ (5.9) 

Alr i , Al
r+1 
i are values of COi at iterations r and r + 1; Alr j is the value of COj at 

iteration r; ωjiis the weight of interconnection from COj to COi; f is the barrier 
function (Eq. 5.10)

Fig. 5.11 Pictorial representation of fuzzy cognitive maps 

Table 5.11 Characteristics of concepts and weights 

Nature Direction Remark 

Positive 
(negative) 

Changes in the cause, COi and effect, COj take place in 
the same direction (opposite direction) 

ωij has a positive sign 
(negative sign) 

No relation Not applicable Edge weight zero 

* Range of weights are (−1, 1) 
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f (x) = 1 

1 + e−cx 
(5.10) 

where x and c are the input and steepness of f . 
Unsupervised algorithms like Hebbian Learning (HL) improve the efficacy of 

FCMs by minimizing the role of expert-based knowledge (Papageorgiou & Salmeron, 
2013). The procedure for training FCM is as follows (Fig. 5.12): 

Here, Differential Hebbian Learning (DHL) and Non-linear Hebbian Learning 
(NHL) are presented, and detailed information about these is available from Papa-
georgiou and Salmeron (2013). In DHL, weights are updated at every iteration 
(Eqs. 5.11–5.12) 

ωr+1 
ij =

{
ωr 
ij + Lr

(
�Alr j �Alr i − ωr 

ij

)
,�Alr i �= 0 

ωr 
ij, �Alr i = 0 

(5.11)

Fig. 5.12 Training process of FCM 
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where

�Alr i = Alr i − Alr−1 
i 

Lr =
[
0.1 − r 

11N

]
(5.12) 

Lr is learning rate, N is a constant value to make sure that Lr does not take 
negative values during the iterative process while updating weights (Papageorgiou & 
Salmeron, 2013). 

In NHL, weights are updated at every iteration (Eq. 5.13) 

ωr+1 
ij = ωr 

ij + LrAlr j
(
Alr i − sgn

(
ωrr ij

)
Alr j ω

r 
ij

)
(5.13) 

sgn(.) is the sign function. Updation of weights continues until the termination 
criterion is satisfied. 

Numerical Problem 5.8. There are three concepts: Terrain (1), Soil (2), and Runoff 
(3). Concept 1 influence 2; 2 influence 3; 3 influence 1. There is a situation that 
triggers concept 2. What will the effect of this situation be on all other concepts? 
Solve using DHL. Refer to Fig. 5.13 and Table 5.12 for the details. Take the N value 
as 100 and the steepness coefficient as 1. 

The random weight matrix is presented in Table 5.12 
The initial activation vector of the FCM would be: 

A0 = [0 1  0]

Fig. 5.13 Input data for 
FCM
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Table 5.12 Random weight 
matrix Concept 1 2 3 

1 0 0.5 0.3 

2 −0.4 0 0.7 

3 0.4 0.25 0

Solution: 

Iteration r = 1: 
The activation vector is updated using the following equation: 

Alr+1 
i = f

(
Alr i + 

N∑
i=1,i �=j 

ωjiAlr j

)
[refer to Eq. 5.9]. 

f (x) = 1 
1+e−x ; c = 1(given) 

Al1 1 = f (0 + 0 × 0 + 1 × (−0.4) + 0 × 0.4) = f (−0.4) = 1 

1 + e−(−0.4) = 0.4013 

Al1 2 = f (1 + 0 × 0.5 + 1 × 0 + 0 × 0.25) = f (1) = 1 

1 + e−1.0 
= 0.7311 

Al1 3 = f (0 + 0 × 0.3 + 1 × 0.7 + 0 × 0) = f (0.7) = 1 

1 + e−0.7 
= 0.6682 

Hence, the activation vector will be Al1 = [0.4013 0.7311 0.6682]. 
Learning rate Lr =

[
0.1 − r 

11N

] = [
0.1 − 1 

1100

] = 0.0991 [iteration number r = 
1, N = 100]. 

The weight matrix is updated using Eq. (5.11), presented here again for the ready 
reference. 

ωr+1 
ij =

{
ωr 
ij + Lr

(
�Alr j �Alr i − ωr 

ij

)
, �Alr i �= 0 

ωr 
ij, �Alr i = 0

}

ω1 
11 =0 + 0.0991 × ( (0.4013 − 0) × (0.4013 − 0) − 0) 

= 0.016 ∼ 0 (rounded to zero as the comparison is against 

the same concept and applies to all diagonal elements) 

ω1 
12 = 0.5 + 0.0991 × ((0.7311 − 1) × (0.4013 − 0) − 0.5) = 0.4398 

ω1 
13 = 0.3 + 0.0991 × ((0.6682 − 0) × (0.4013 − 0) − 0.3) = 0.2968
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ω1 
21 = −0.4 + 0.0991 × ((0.4013 − 0) × (0.7311 − 1) − (−0.4)) = −0.3711 

ω1 
22 = 0 + 0.0991 × ((0.7311 − 1) × (0.7311 − 1) − 0) = 0.0072 ∼ 0 

ω1 
23 = 0.7 + 0.0991 × ((0.6682 − 0) × (0.7311 − 1) − 0.7) = 0.6128 

ω1 
31 = 0.4 + 0.0991 × ((0.4013 − 0) × (0.6682 − 0) − 0.4) = 0.3869 

ω1 
32 = 0.25 + 0.0991 × ((0.7311 − 1) × (0.6682 − 0) − 0.25) = 0.2074 

ω1 
33 = 0 + 0.0991 × ((0.6682 − 0) × (0.6682 − 0) − 0) = 0.0442 ∼ 0 

The updated weight matrix after iteration 1 is (refer to Table 5.13): 
Iteration r = 2: 

Al2 1 = f (0.4013 + (0.4013 × 0) + (0.7311 × (−0.3711)) + (0.6682 × 0.3869)) 

= f (0.3885) = 1 

1 + e−0.3885 
= 0.5959 

Al2 2 = f (0.7311 + (0.4013 × 0.4398) + (0.7311 × 0) + (0.6682 × 0.2074)) 

= f (1.0462) = 1 

1 + e−1.0462 
= 0.7400 

Al2 3 = f (0.6682 + (0.4013 × 0.2968) + (0.7311 × 0.6128) + (0.6682 × 0)) 

= f (1.2353) = 1 

1 + e−1.2353 
= 0.7747 

Hence, the activation vector will be Al2 = [0.5959 0.7400 0.7747]. 
The learning rate for iteration 2 is

[
0.1 − r 

11N

] = [
0.1 − 2 

1100

] = 0.0982. 
The weight matrix is updated which is as follows:

ω1 
11 = 0 + 0.0982 × ((0.5959 − 0.4013) × (0.5959 − 0.4013) − 0) = 0.00372 ∼ 0

Table 5.13 Weight matrix 
after iteration 1 Impact 1 2 3 

1 0 0.4398 0.2968 

2 −0.3711 0 0.6128 

3 0.3869 0.2074 0 



5.4 Fuzzy Cognitive Mapping 145

ω1 
12 = 0.4398 + 0.0982 × ((0.7400 − 0.7311) × (0.5959 − 0.4013) − 0.4398) = 0.3968

ω1 
13 = 0.2968 + 0.0982 × ((0.7747 − 0.6682) × (0.5959 − 0.4013) − 0.2968) = 0.2697 

ω1 
21 = −0.3711 + 0.0982 × ((0.5959 − 0.4013) × (0.7400 − 0.7311) − (−0.3711)) = −0.3345 

ω1 
22 = 0 + 0.0982 × ((0.7400 − 0.7311) × (0.7400 − 0.7311) − 0) = 0.0000077784 ∼ 0 

ω1 
23 = 0.6128 + 0.0982 × ((0.7747 − 0.6682) × (0.7400 − 0.7311) − 0.6128) = 0.5527 

ω1 
31 = 0.3869 + 0.0982 × ((0.5959 − 0.4013) × (0.7747 − 0.6682) − 0.3869) = 0.3509 

ω1 
32 = 0.2074 + 0.0982 × ((0.7400 − 0.7311) × (0.7747 − 0.6682) − 0.2074) = 0.1871 

ω1 
33 = 0 + 0.0982 × ((0.7747 − 0.6682) × (0.7747 − 0.6682) − 0) = 0.001113 ∼ 0 

The updated weight matrix after iteration 2 is presented in Table 5.14. 

Numerical Problem 5.9. Solve numerical problem 5.8 using NHL (refer to 
Table 5.12). The learning rate is 0.001. Show computations for one iteration. 

Solution: 

Iteration r = 1: 
The activation vector is updated 

A1 
l1 = f (0 + 0 × 0 + 1 × (−0.4) + 0 × 0.4) = f (−0.4) = 1 

1 + e−(−0.4) = 0.4013 

Al1 2 = f (1 + 0 × 0.5 + 1 × 0 + 0 × 0.25) = f (1) = 1 

1 + e−1.0 
= 0.7311 

Al1 3 = f (0 + 0 × 0.3 + 1 × 0.7 + 0 × 0) = f (0.7) = 1 

1 + e−0.7 
= 0.6682 

Hence, the activation vector will be Al1 = [0.4013 0.7311 0.6682]. 
The weight matrix is updated using Eq. 5.13 

ωr+1 
ij = ωr 

ij + LrAlr j
(
Alr i − sgn

(
ωrr ij

)
Alr j ω

r 
ij

)

Table 5.14 Weight matrix 
after iteration 2 Impact 1 2 3 

1 0 0.3968 0.2697 

2 −0.3345 0 0.5527 

3 0.3509 0.1871 0 
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ω1 
11 = 0 + 0.001 × 0.4013 × (0.4013 − 0.4013(0)) = 0.00016 ∼ 0 

ω1 
12 = 0.5 + 0.001 × 0.7311 × (0.4013 − 0.7311 × 0.5) = 0.5 

ω1 
13 = 0.3 + 0.001 × 0.6682 × (0.4013 − 0.6682 × 0.3) = 0.3001 

ω1 
21 = −0.4 + 0.001 × 0.4013 × (0.7311 − (−)0.4013 × (−0.4) = −0.3998 

ω1 
22 = 0 + 0.001 × 0.7311 × (0.7311 − 0.7311 × 0) = 0.00053 ∼ 0 

ω1 
23 = 0.7 + 0.001 × 0.6682 × (0.7311 − 0.6682 × 0.7) = 0.7002 

ω1 
31 = 0.4 + 0.001 × 0.4013 × (0.6682 − 0.4013 × 0.4) = 0.4002 

ω1 
32 = 0.25 + 0.001 × 0.7311 × (0.6682 − 0.7311 × 0.25) = 0.2504 

ω1 
33 = 0 + 0.001 × 0.6682 × (0.6682 − 0.6682 × 0) = 0.00045 ∼ 0 

The weight matrix after iteration 1 is (refer to Table 5.15): 

5.5 Fuzzy Logic-Based Optimization 

Optimization techniques play a significant role in engineering and management, 
where there are recurrent phenomena of resource limitation and massive require-
ments. The perennial question among policymakers is how best to utilize the avail-
able resources with the existing constraints to maximize achievements (Loucks & 
Beek, 2017). Components that govern the workflow of the optimization process are 
described as follows:

• Decision variables (DV) are the variables set that controls the problem. 
• The objective function (O) represents the goal of the problem.

Table 5.15 Weight matrix 
after iteration 1 Impact 1 2 3 

1 0 0.5 0.3001 

2 −0.3998 0 0.7002 

3 0.4002 0.2504 0 
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• Constraints are the challenges that do not allow the objective to achieve its full 
potential. 

• Bounds: Allow the unknown decision variables to take on specific values within 
a range. 

• Representative solution techniques for obtaining the optimal solutions are 
Linear Programming (LP), Non-linear Programming (Non-LP), and Quadratic 
Programming (QP). 

• Optimum output: DV obtained after optimization and related objective function 

The process also involves extensive data collection, which may have to be refined 
before using as input to the optimization model. A mathematical description is 
presented in Table 5.16 with three DVs, x1, x2, x3, with an intent to demonstrate 
chosen optimization techniques (Rao, 2013). 

As discussed in Table 5.16, SS depends on O and CS in any optimization frame-
work. In a fuzzy context, these are expressed as (Gaur et al., 2015; Morankar et al., 
2016; Vasan et al., 2022) (Eq.  5.14): 

μSS = (μO ∩ μCS ) (5.14)

Table 5.16 Example for demonstrating chosen optimization techniques 

Characteristic LP Non-LP QP 

Objective function Linear functions of 
DV 

Non-linear and linear 
functions of DV 

Quadratic and linear 
functions of DV 

Constraints Linear functions of 
DV 

Non-linear and linear 
functions of DV 

Linear functions of DV 

Mathematical 
representation of O 

Max/Min 1600 x1 + 
1700 x2 + 1800 x3 

Max/Min 1600 x2 1 + 

1700 x1.8 2 + 1800 x4.2 3 

Max/Min 1600 x2 1 + 

1700 x2 2 + 1800 x2 3 + 
1800 x1 + 1900 x2 + 
2000 x3 

Mathematical 
representation of 
constraints (CS) 

0.06 x1 + 0.16 x2 + 
0.18 x3 ≤ 6 
x1 + x2 + x3 ≤ 400 

0.06 x4.2 1 + 0.16 x5.4 2 x
2 
2 

+ 0.12 x2.6 3 ≤ 6 

x2.8 1 + x2 + x4.4 3 ≤ 400 

0.06 x1 + 0.16 x2 + 
0.12 x3 ≤ 6 
x1 + x2 + x3 ≤ 400 

Bounds 
[Assuming linear 
variation of 
bounds] 

20 ≤ x1 ≥ 50 
30 ≤ x2 ≥ 60 
40 ≤ x3 ≥ 80 

20 ≤ x1 ≥ 50 
30 ≤ x2 ≥ 60 
40 ≤ x3 ≥ 80 

20 ≤ x1 ≥ 50 
30 ≤ x2 ≥ 60 
40 ≤ x3 ≥ 80 

Decision space 
(SS),  based on O  
and CS 

Global optimum 
solution 

It is likely the local (or global) optimal solution 

Remarks No uncertainty in parameters, objective function, or constraints is 
considered 
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μSS,μO,μCS represent MF corresponding to SS, O, and CS. With several objec-
tive functions (1, 2, n) and constraints (1, 2, m), Eq. 5.14 can be transformed into 
Eqs. (5.15–5.16) 

μSS (X ) =
[
μO1(X ) ∩ μO2(X ) ∩ . . .  ∩ μOn(X ) ∩ μCS1(X ) ∩ μCS2(X ) ∩ . . .  ∩ μCSm(X )

]
(5.15) 

Here, AND denotes intersection (∩), i.e., minimum (Morankar et al., 2013; 
Zimmermann, 1991) 

μSS (X ) = Min[μO1(X ), μO2(X ), . . . , μOn(X ), μCS1(X ), μCS2(X ), . . . , μCSm(X )] 
(5.16) 

The optimum solution is (Eq. 5.17) 

μ∗ 
SS (X ) = Max[(μSS (X )] (5.17) 

Degree of satisfaction λ, an auxiliary continuous variable, is introduced as an equiva-
lent optimization problem in the single objective framework (Eq. 5.18). The intention 
is to identify a unique solution x*, which facilitates the optimum output (in this case 
λ) (Lence et al., 2017; Sasikumar & Mujumdar, 1998) (Eqs.  5.18–5.21) 

Max λ (5.18) 

subject to 

μOj(X ) ≥ λ j = 1, 2,  . . . ,  n (5.19) 

μCSi(X ) ≥ λ i = 1, 2, .  .  .  ,  m (5.20) 

0 ≤ λ ≤ 1 (5.21) 

In addition, all other case study-related constraints and bounds must be considered. 
However, the intensity of high computational requirements in the case of tradi-

tional non-linear optimization techniques motivated the search for new approaches. 
In this regard, evolutionary optimization algorithms have gained prominence for 
solving complex problems (Reddy & Kumar, 2020) and are briefly discussed in 
Chap. 6. 

Numerical Problem 5.10. Four categories of machines are proposed to be installed 
in a workshop where space is available for 15 machines. The lubricating oil required 
for maintenance of each type of machine is 0.1 L (Here L is Litre), 0.2 L, 0.4 L, 
and 0.1 L, whereas available is 4.5 L. The working capacity of one unit of each
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category machine for a day is 3, 5, 5, and 3 h. The minimum number of machines 
expected to be installed is 1, 2, 4, and 2; the maximum is 2, 4, 5, and 7. Mention the 
decision variables. Formulate the problem for maximization of the working capacity 
of machines and solve it in an LP framework. 

Solution: 

Let m1, m2, m3, m4 are the number of machines proposed under four different 
categories in a workshop and these are the decision variables. 

Objective function is the maximization of the working capacity of machines termed 
WC 

Max WC = 3m1 + 5m2 + 5m3 + 3m4 

Subjected to: 

Constraints 

m1 + m2 + m3 + m4 ≤ 15 

0.1m1 + 0.2m2 + 0.4m3 + 0.1m4 ≤ 4.5 

Bounds 

1 ≤ m1 ≤ 2 
2 ≤ m2 ≤ 4 
4 ≤ m3 ≤ 5 
2 ≤ m4 ≤ 7 

Solution: 

The optimal working capacity of machines is 63 h, 

m1 = 1; 
m2 = 4; 
m3 = m4 = 5
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Numerical Problem 5.11. Solve the following two objectives (maximizing the water 
supply and minimizing aquifer loss) problem in a fuzzy non-linear optimization 
framework. 

Max z1 = 320x1 + 440x2 + 620x3 [maximizing the water supply] 
Min z2 = 6x1 + 2x2 + 33 [minimizing the aquifer loss] 
subject to 

0.2x1 + 0.28x2 + 0.6x3 ≤ 42 

0.26x1 + 0.44x2 ≤ 24 

20 ≤ x1 ≤ 44; 

30 ≤ x2 ≤ 48 

25 ≤ x3 ≤ 45 

Use non-linear MF with β = 3. Consider uncertainty in objective functions only. 

Solution: 

Maximization and minimization of each objective function provide higher and lower 
limits, respectively (Columns 2–5 for individual higher and lower values for each 
objective, Table 5.17). 

The non-linear MF-based optimization model is as follows: 
Max λ 
subject to

Table 5.17 Results of fuzzy optimization 

Characteristics 
(1) 

Higher 
Z1 
(2) 

Lower 
Z1 
(3) 

Higher Z2 
(4) 

Lower 
Z2 
(5) 

Solution with non-linear MF (both 
objectives β = 3) 
(6) 

x1 41.53846 20 41.53846 20 20 

x2 30 30 30 30 42.72727 

x3 42.15385 25 42.15385 25 35.38240 

Objective 
function value 

52,627.7 35,100 435.69 255 (Maximum 47,137.09, minimum 
311.6) 

Optimum degree of satisfaction λ 
= 0.32388 
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μZ (X ) =
[
Z − ZL 
ZU − ZL

]β 
=

[
320x1 + 440x2 + 620x3 − 35100 

52627.7 − 35100

]3 

≥ λ 

μZ (X ) =
[
ZU − Z 
ZU − ZL

]β 
=

[
435.69 − (6x1 + 2x2 + 3x3) 

435.69 − 255

]3 

≥ λ 

0.2x1 + 0.28x2 + 0.6x3 ≤ 42 

0.26x1 + 0.44x2 ≤ 24 

x1 ≥ 20; x1 ≤ 44; 

x2 ≥ 30; x2 ≤ 48 

x3 ≥ 25; x3 ≤ 45 

Related results of Non-Linear Optimization are (Column 6 of Table 5.17): 

• Maximum λ is 0.32388, and the corresponding (x1, x2, x3) values are (20, 
42.72727, and 35.3824). 

• The solution obtained by the fuzzy optimization problem is between the lowest 
and highest values obtained by individual objectives (columns 2–5), representing 
a compromise solution with the tradeoff of water supply and aquifer loss. 

5.6 Fuzzy CNN, Fuzzy LSTM, and Fuzzy CNN-LSTM 

Fuzzy CNN employs a fuzzy inference layer in place of a fully connected to integrate 
the features more effectively (Lin & Jhang, 2022). The mathematical philosophy of 
Fuzzy CNN till the flattened layer remains the same compared to CNN (Fig. 5.14). 
The fuzzy inference layer is explained mathematically in terms of the symmetric 
Gaussian membership function using linguistic terms (High, Medium, Low; H, M, 
L). These fuzzified features are further used to create rules R. The initial member-
ship function μFq 

i 
, for qth output inference having feature maps pf is calculated for 

each input feature and directly used in the estimation of the output ∅pf 
q (Langeroudi 

et al., 2022). Hereafter, combined weighted inference (z) is obtained through the 
multiplication of weight (ω) and inference (∅) matrices. Further, the z is normalized 
to get output. Note that the output changes when different activation functions are 
considered. Back-propagation of the error is accomplished by improving the gradient 
values (Hsu et al., 2020).

Fuzzy LSTM is an architecture of LSTM in a fuzzy framework (Li et al., 2020). 
Fuzziness is incorporated through the fuzzy inference layer immediately after the
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Fig. 5.14 The architecture of fuzzy CNN

output of LSTM (Fig. 5.15). This type of incorporation is done to avoid disrupting 
information flow between the forget, input, and output gates. These gates maintain the 
balance between retaining helpful information and discarding irrelevant information. 
Consequently, adding fuzziness between these gates potentially reduces the ability 
of the algorithm to capture long-term dependencies. Therefore, applying fuzziness 
after the output stage helps maintain model interpretability, handles uncertainties, 
and ensures the LSTM’s core operations remain intact (Langeroudi et al., 2022).

The fuzzy inference layer mainly comprises fuzzy sets, μ, tensor layer (Tl), rule 
layer (R), and fusion layer (F). μ, R, and∅ are the same as Fuzzy-CNN. The fuzzified 
features obtained from the μ forms Tl . After that, the rules are created on the features 
and the μ. The final layer is the F which employs three operations: 

i. μ and R are connected utilizing the concatenation operation and are character-
ized by F(μ, R). 

ii. It undergoes a linear transformation. 
iii. Subsequently, a selected activation function is applied to achieve the desired 

outcome.
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Fig. 5.15 The architecture of fuzzy LSTM (Modified and adapted from Vogeti et al., 2024 under 
CC BY-NC-ND 4.0 License)

Extensive details of these techniques are available from Vogeti et al. (2024). 
Fuzzy CNN-LSTM is an extension of CNN-LSTM in the fuzzy framework (Bao 

et al., 2022). 

Representative Software 

ANFIS in MatLab perspective [https://www.mathworks.com/help/fuzzy/neuro-ada 
ptive-learning-and-anfis.html, accessed on 07.04.2023]. 

Fuzzy Cognitive Mapping: Mental Modeler https://www.mentalmodeler.com/, 
accessed on 07.04.2023]. 

LINGO handles Linear, Non-linear based optimization problems https://www.lindo. 
com/index.php/products/lingo-and-optimization-modeling 

Revision Questions and Exercise Problems 

5.1 Differentiate crisp and fuzzy logic. 
5.2 What are the causes of uncertainty? 
5.3 What are the associated uncertainties in WDN? 
5.4 What is an MF? What is its purpose? 
5.5 What are fuzzification and defuzzification? 
5.6 What are the possible shapes of MF? 
5.7 What is the meaning of non-increasing and non-decreasing MF? 
5.8 What is the significance of β in the context of non-linear fuzzy optimization? 
5.9 What is the significance of S in the case of the exponential MF? 

5.10 What is the mathematical philosophy of triangular and trapezoidal MF? 
5.11 Discuss the Centre of gravity-based defuzzification method.

https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html
https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html
https://www.mentalmodeler.com/
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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5.12 Effective sunshine hours in the semi-arid zone are recorded as 30% of the 
day. Later, it was found to have an error of 15%. Fuzzify in a triangular MF 
framework. 

5.13 Researchers measured the pressure ratio while designing a fuel cell air 
compressor. The pressure ratios measured by three experts are 0.72, 0.76, and 
0.80. Show them in a triangular MF framework. However, the coordinating 
scientist wishes to have a unique value for design consideration. Discuss in 
detail the possibility of unique value. 

5.14 Risk analysis is an essential component of the stock market. However, risk 
beyond a specific value may lead to inconvenience to investors. Keeping this 
in view, formulate MF for the following data: risk up to 0.25 is agreeable; 0.25 
to 0.3 is moderately risky, and beyond this, it is not advisable. Assume data 
wherever applicable. Show the same in the appropriate MF framework. 

5.15 Formulate non-decreasing exponential and hyperbolic MF for the data related 
to energy management. The highest value of an objective function Z is 350, 
whereas the lowest is 180. Take the value of exponential parameter S as 0.8. 

5.16 In a transporation economics problem, monetary benefits play a significant 
role and are expressed as 18x1 + 8x2. Here, x1 and x2 are governing decision 
variables. The highest and lowest values of the objective function are 200 and 
140 units. The value of β is 3.4. Express the problem in the non-linear MF 
format. 

5.17 What is ANFIS? 
5.18 How many layers exist in ANFIS? Explain their functionality in brief. 
5.19 What is the mathematical expression of the Gaussian MF? 
5.20 Analyze the given problem from an ANFIS perspective. Use the data from 

Table 5.1. 

IF IQ is high AND LD is high, THEN  Y is 50 × IQ − 225 × LD + 1800 
IF IQ is high AND LD is low, THEN  Y is 38 × IQ − 590 × LD + 1800 
IF IQ is low AND LD is low, THEN  Y is 55 × IQ − 600 × LD + 1560 
IF IQ is low AND LD is high, THEN  Y is 30 × IQ − 140 × LD + 600

5.21 What are the concepts and weights in the case of FCM? 
5.22 What is the range of weights in the case of FCM? 
5.23 What is an activation vector? What is its purpose? 
5.24 What is the purpose of HL algorithms? 
5.25 Is there a reduction in the dependency of FCM on expert’s knowledge using 

HL algorithms? 
5.26 Do HL algorithms fall under supervised or unsupervised approaches? 
5.27 What are the different types of HL algorithms? 
5.28 What are the parameters that affect learning rates in the case of DHL? 
5.29 What is the significance of the learning rate in HL algorithms? 
5.30 How does weight updation differ in DHL and NHL? 
5.31 Which has the least computational complexity, DHL or NHL? Justify? 
5.32 Three concepts, mental health MH, classroom factors CF, and socioeconomic 

status SS, impact students’ behaviour. MH impacts CF; CF impacts SS; SS
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Table 5.18 Random weight 
matrix Impact MH CF SS 

MH 0 0.28 0 

CF 0.5 0 0.6 

SS 0.80 0.3 0 

impacts MH. There is a situation that triggers the concept of MH. How will 
this situation affect all other concepts? Solve using DHL and NHL. Table 5.18 
shows a random weight matrix.

The initial activation vector is [1, 0, 0]. Assume suitable values while solving the 
problem. 

5.33 What is the physical interpretation of decision variables in the optimization 
framework? 

5.34 What is the philosophy of objective functions and constraints? 
5.35 What is the difference between constraints and bounds? 
5.36 What is the difference between output and optimum output? 
5.37 What are the possible objective functions in the case of WDN? 
5.38 What is the workflow while solving optimization problems? 
5.39 What is the mathematical difference between LP and QP? 
5.40 What is the mathematical difference between Non-LP and QP? 
5.41 What is the necessity of fuzzy optimization? How is it different from crisp 

optimization? 
5.42 On what parameters does decision space depend? 
5.43 What is an auxiliary variable in the context of fuzzy optimization? 
5.44 What is the degree of satisfaction? What is its purpose in the case of fuzzy 

optimization? 
5.45 Can the degree of satisfaction be considered as an objective function in fuzzy 

optimization? Discuss in detail. 
5.46 Do you prefer a higher degree of satisfaction or a lower one? 
5.47 What is the range of degree of satisfaction? What is the physical significance 

if it is 1? 
5.48 Formulate an optimization problem in a fuzzy optimization framework using 

non-linear MF with β = 6, exponential MF with S = 0.8, and hyperbolic MF 
from your domain of interest. Consider uncertainty in objective functions only. 
You are expected to take three decision variables and two objective functions 
with maximization in nature. You can think of keeping three constraints. 

5.49 What is the difference between fuzzy CNN and CNN? Discuss in detail. 
5.50 What is the difference between fuzzy LSTM and LSTM? Discuss in detail. 

Advanced Review Questions 

5.51 Can you identify four situations in which MF can be employed? 
5.52 Mention one situation in your domain of interest to discuss unquantifiable, 

non-obtainable, incomplete information. Relate with examples.
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5.53 Relate hyperbolic and exponential MF with one example in your domain of 
interest. 

5.54 Can you propose two new MFs with corresponding mathematical equations? 
5.55 Do you prefer a triangular or trapezoidal MF? Why? 
5.56 Several defuzzification methods exist. Analyze and compare the same. 
5.57 What is FIS? Does it work on a rule-based platform? If yes, expand your 

answer. If not, explain the logic of the same. 
5.58 How Mamdani and Sugeno FIS differ? Explain mathematically. 
5.59 What is the purpose of antecedent and consequent parameters in FIS? 
5.60 Discuss three case studies related to Mamdani FIS. 
5.61 Discuss how Mamdani’s approach can be facilitated in any programming 

platform. 
5.62 Discuss three case studies related to ANFIS. 
5.63 Discuss in detail how ANFIS can be facilitated in any programming platform. 
5.64 How does FCM help the decision-making process in your research area? 

Discuss with related case studies. 
5.65 Mention four examples of optimization in your research area. Also, mention 

decision variables, objective functions, and constraints. 
5.66 Are fuzzy optimization approaches capable of handling the uncertainty in the 

data? 
5.67 Discuss two case studies where fuzzy optimization was employed. Emphasize 

the decision variables, objective function, constraints, and bounds. 
5.68 Can you modify the existing architectures of Fuzzy LSTM and Fuzzy CNN? 
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Chapter 6 
Emerging Research Areas 

6.1 Introduction 

The chapter discusses advanced topics, such as Blockchain, recent ML tech-
niques, Evolutionary Algorithms (EA), AI Tools, the Internet of Things (IoT), 
Big Data, Decision Support Systems (DSS), Taguchi Design of Experiments, data 
augmentation, and Cross-Validation. Related information is as follows: 

6.2 Blockchain 

Water is an indispensable commodity of life, and its conservation is necessary. In this 
regard, scientific allocation of available water resources for drinking, farming, and 
industrial purposes is required for efficient utilization. One of the most promising 
approaches in this context is a Blockchain-based decentralized system that enables 
peer-to-peer trading of tokenized water (Li et al., 2022a). This section discusses the 
architecture of Blockchain, which comprises the application, consensus, network, 
and data layers (Fig. 6.1) in the context of water resources.

6.2.1 Architecture of Blockchain 

Application layer comprises three categories of individuals, i.e., users, prosumers (a 
prosumer is a person who produces as well as consumes products), and administrators 
can access this layer. The following are the functionalities:

• Trading request: It facilitates a user to request for purchasing, and other users can 
negotiate prices for selling their water currency (1 water currency = X Rupee
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Fig. 6.1 Typical components of Blockchain

= 1 Litre (L) of permitted water usage). In this section, the currency and water 
currency are used synonymously.

• Transaction request: It is a portal for users to request transactions through the 
Blockchain. 

• Block Explorer: It is a front end to view Blockchain data and all the transactions 
stored. 

• Wallet: It helps users store their credentials (public or private key pairs) for their 
account transactions. 

• User list: It is a front end where users can see a list of other active users and their 
water currency balance. 

• User register: It is a portal for registering new users. 
• Contract payment is the amount the user pays to specific contracts, i.e., public, 

private, or community, to receive water to their respective connections. 
• Transaction validation: Every Blockchain protocol has a predefined set of transac-

tions that will be considered valid. In general, these are SenderKey, ReceiverKey, 
and Amount. 

Different access controls exist for various individuals, as discussed in Table 6.1.
The water currency Blockchain will allow three kinds of transactions to be written 

in the Blockchain, which are described as follows: 

Water currency creation: This transaction enables registering when a sufficient 
amount of new water is available. They can only be considered valid and processed 
when data obtained from sensors support the transaction. 

Water currency transfer: It facilitates the transfer of water currency from one user to 
another.
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Table 6.1 Information about various stakeholders’ access to different modules 

Functionalities Trading 
request 

Transaction 
request 

Block 
explorer 

Wallet User 
list 

User 
register 

Contract 
payment 

Transaction 
validation 

Stakeholders 

Administrator Yes Yes Yes Yes Yes Yes Yes Yes 

Prosumer Yes Yes Yes Yes Yes No Yes Yes 

User Yes Yes Yes Yes Yes No No No

Water currency consumption: It indicates the water consumed by households, 
industry, farming, or other purposes. Water suppliers or local authorities and their 
respective smart contracts perform these kinds of transactions to register the amount 
of water consumed in the Blockchain. 

The receiver field indicates where the water is consumed so that the water supplier 
can release the water to that connection after noticing that transaction. After that, the 
corresponding supplier for Meter_ID will release X litres of water to that connec-
tion. Any complex implementation can be performed using these three elementary 
transactions. Now, considering the balance of a user-type node in the system, unspent 
transaction output will be 

Balance = � Currency bought − � Currency sold − � Currency consumed 

For the Prosumer or Administrator, it will be 

Balance =� Currency bought − � Currency sold + � Currency produced 

− � Currency consumed. 

The consensus layer determines the type of methods, like Proof of Work (PoW), 
Proof of Stake (PoS), and Proof of Elapsed Time (PoET)) used by all the nodes to 
accept a single Blockchain state all across the network and are explained as follows: 

PoW: A group of nodes called miners takes a bunch of transactions from the pool 
and then forms a block. They must solve a computational hashing puzzle to add their 
block to the Blockchain network by competing with other miners. The miner unrav-
elling the puzzle first will add their block to the chain, and everyone will accept that 
block. Consequently, they will be rewarded for doing so by the Blockchain protocol. 
However, after completion of the process, when a new block gets introduced to the 
Blockchain, all the miners need to start from scratch to find the appropriate Nonce 
(or, it can be said that, answer to the new puzzle as the last hash changes to the hash of 
the recently added block header). This results in the generation of ‘Orphan Blocks,’ 
the blocks generated by miners who cannot win the contest, which means that only 
one miner’s work becomes useful, whereas others get wasted. In addition, the diffi-
culty level of that computational puzzle is decided by the network’s difficulty, which 
keeps increasing over time, making mining more and more challenging. Transactions



162 6 Emerging Research Areas

related to Blockchain will be even higher in the water management context, so PoW 
is not a feasible solution. 

PoS: One node is arbitrarily selected to add to the block in the Blockchain. Still, the 
chance of getting chosen is proportional to the amount of stake the node holds in 
the Blockchain token. It means that any stakeholder owns S out of 100 tokens in the 
network. They have an S% chance of signing the next block. So, the coins behave 
as collateral, and when a participant or node is selected to validate a transaction, 
they win a reward. Some variants of this algorithm work similarly, such as Proof 
of Coinage. This consensus allows a node to validate and add a block based on its 
share in the Blockchain network of tokenized assets. However, this approach cannot 
be followed for water management as it has few limitations. Firstly, it can lead to 
the scenario where water-rich regions or communities will have more control over 
the network than those with less, which is unacceptable in the case of water rights 
distribution. As a note, PoS and PoW are reward-driven consensus. However, no 
such reward is possible in the Blockchain network of tokenized water. Hence, such 
consensus cannot be applied to water management using Blockchain. 

PoET is a Blockchain consensus algorithm preventing high resource utilization. 
Selecting the next network participant to add to the block is ensured randomly under 
the Trusted Execution Environment (TEE). Thus, there is no waste of computational 
resources or dependency on the stake of the participant to establish byzantine fault 
tolerance. TEE randomly generates a waiting time for each node, and the first node 
completing its waiting time will be allowed to be added to the network block. Here, 
the fairness of the randomness of the algorithm is ensured by a protected hardware 
environment. However, it also has a few limitations. First, it does not support openness 
as much as PoW or PoS because certification is required to join a PoET network. 
The second limitation is it does not reward the node for adding a block to the chain. 
So, the private participant has no incentive to make their computational resource 
available to the network. 

The network layer takes care of communication between nodes of the Blockchain 
system. It will use the internet and can be quickly established using frameworks like 
Hyperledger. 

The data layer defines information that will be stored inside the Blockchain. For 
example, if the block capacity is 4, four transactions per block can be implemented. 

Some of the benefits of a Blockchain are: 

• It is an immutable ledger that cannot be altered and tampered with. This aspect is 
ensured by cryptography, which links the small storage units called blocks. This 
linkage depends on the data stored in the block. Any attempt to alter the data will 
break the link or chain, making tampering evident. It can build systems with the 
inclusion of trust. Any stakeholder can see the transactions and transfers related 
to water from anywhere. Water thefts will be traceable, at least from well-known 
water resources that are linked with the system through sensors. An immutable 
ledger and the suitable facility to explore block data will allow every end user to 
make the right decision in a peer-to-peer exchange so that no one unfairly benefits 
from access to more information.
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The smart contract is a self-executed undertaking between the seller and buyer. 
These contracts run on the Blockchain network and can perform tasks previously 
done by a centralized authority. The decentralized character of Blockchain ensures 
the automatic and speedy execution of contracts without intermediaries. 

• IoT, linked with Blockchain, can benefit authorities by allowing them to allocate 
and make appropriate decisions as they will provide precise data. Water usage, 
wastage, and quality can be monitored and made available to the relevant stake-
holders. It starts from the first block, and if all the transactions are considered, 
the user ends up in the same state as other users or nodes. This deterministic 
nature helps nodes reach a consensus and approve new transactions. Data can be 
linked with smart contracts, making contracts more effective in their respective 
functions. 

• Water needs tokenization to create a decentralized management system and a 
prosumer market. The virtual representation of water is represented by water 
currency. Here, X depends on water availability in that particular region, type 
of usage, and previous usage, such as household or industrial. Depending on 
the water intake and availability in the area, every household is granted some 
water for usage in the form of water currency. Industries can also purchase water 
currency from authorities or community harvesting facilities to pay their water 
supply bills. Individuals with high water requirements can buy this currency at a 
lower cost than the authorities provide. Sellers will be rewarded economically for 
their conservation efforts. 

However, the limitations of Blockchain are high energy consumption and time, 
which is required to achieve consensus in its implementations (Sriyono, 2020; Xia  
et al., 2022). The philosophy behind Blockchain is demonstrated in the context of 
water management, followed by a numerical problem. 

6.2.2 Water Management Ecosystem 

Here, real-life scenarios are presented to understand how this system can be 
implemented and might work on the ground level (refer to Fig. 6.2). In Fig. 6.2,

• The entity in purple is the state government board, considered administrator (type 
3 category). 

• Entities in red are local governance, and pink is a prosumer (both are type 2 
categories). 

• Yellow, green, and grey are household [H], farm, and industry users, respectively 
(type 1 category). 

• The blue elements in the diagram are the water bodies [pond, river, and harvest]. 
• Dotted lines define local area borders, squared or circular lines represent metered 

water connections, and arrows indicate transaction flow.
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Fig. 6.2 Water management ecosystem 

• Document icon pen represents the contracts (C1, C2, C3, C4) and prosumer 
contract (PC1). 

Now understand the functioning of the system step by step, which is as follows 
(refer to Fig. 6.2): 

1. First, the state authority is the administrator-level authority and is solely respon-
sible for adding all the other entities in the system, including prosumers. Every 
prosumer-type authority has a water reservoir of its own. For example, the munic-
ipal corporation has a pond and a river shared with the panchayat nearby. In the 
case of shared water resources, a predefined agreement on the water distribution 
of that resource should exist. P1 is a prosumer and has a water harvesting facility. 

2. When water intake is observed via IoT devices, the water currency creation 
transaction is registered by the respective authority having that resource or having 
a share in that resource.
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SenderKey: ProducerKey, ReceiverKey: ProducerKey, Amount: Z 

3. For every entity with water currency and being a prosumer type, the user releases 
smart contracts for different users through which they can buy currency by paying 
them in |. Here, the municipal corporation released contract 1 (C1) for household 
usage and prosumer P1, C2 for industrial use, and C3 for cooperation with another 
municipal corporation. Panchayat released contract C4 for farming usage. P1 
also has a water transport facility and reached a contract agreement with industry 
users, creating a prosumer contract (PC1). 

4. Terms in the smart contract can be different depending on the policy of the local 
authority. Various local authorities deploy smart contracts (like C1, C2, and C3 
by the municipal corporation, C4 by the panchayat, and PC1 by prosumer P1) to 
structure their rates and usage regulations. They can be defined in their respective 
contracts. 

For ease of understanding of the reader, C1 can be as follows for demonstration 
purposes, 

• In C1, users will be charged | X1 per 1 currency for water usage of 0 to 20 L, a 
day per person in the house. 

• | X2 per 1 currency will be charged for water usage of 20 to 50 L a day per person 
in house. 

• | X3 per 1 currency for water usage of more than 50 L a day per person in the 
house. 

5. Now, every user is mapped by the water supplier (that can either be the local 
authority or any producer) to the contract they need to use to purchase water 
currency from them. For example, Households H1, H2, and H3 use contract C1. 
Although there can be a case where the contract will be the same, water supply 
might come from different sources depending on convenience. H1 and H2 receive 
water from the pond, but H3 gets water from the river. Also, contracts carry the 
data of users who are allowed to access it. 

6. In this ecosystem, industry users have two contracts available, C2 and PC1, and 
they can choose to utilize any, depending on the terms and conditions, which can 
maximize their monetary benefits. 

7. Having a transport network, municipal corporations can also establish more 
contracts like C3 with other authorities. This is how water can be directed from 
abundance to water-scarce areas. 

8. Now, if a user H1 wants Y litres of water and according to their state of usage, 
water costs him | X per currency or litre. 

• They will buy Y water currency from the C1 contract by paying | X × Y. 
Then, the municipal corporation will initiate the following transaction. 

SenderKey: MunicipalKey, ReceiverKey: H1Key, Amount: Y 

• Then, H1 can spend that currency to get the water by performing water usage 
transactions.
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SenderKey: H1Key, ReceiverKey: H1_METER_ID, Amount: Y 

9. Users can also perform peer-to-peer water transfers. If H1 has reached a slot of 
| X3 per litre, and user H2 has got into the X2 slab, where X3 > X2, then 

• User H1 will buy water currency from H2 at some cost if X2 < cost < X3. 
• If H1 buys W litres of water from H2 at some decided cost, they pay W × 

cost to H2, and H2 initiates the following water currency transfer transaction. 

SenderKey: H2Key, ReceiverKey: H1Key, Amount: W 

• Similar transactions can be performed by other households (like H3). 
• Even if H5 belongs to other local governing authority areas, peer-to-peer 

transactions between H1, H2, H3, and H5 can also be enabled. 

Ultimately, this can lead to more cooperation contracts between local authorities to 
ensure better water distribution. Further, this system will reward users economically 
and encourage less water usage and conservation. The proposed decentralized system 
is expected to improve water management, which means that the new system should 
be cost-effective for consumers and equitable water distribution among the people. 

Numerical problem 6.1. Table 6.2 presents a hypothetical water distribution 
system’s monthly water consumption (column 2). Compare the centralized system 
(Water bill @ | 200 for unlimited consumption) and Blockchain, i.e., decentralized 
system (refer to Table 6.3). Table 6.3 presents a metered water supply with the new 
charges. The new tariff was to reduce the cost for families using less than 11,000 L of 
water only to | 55 and charge more to households with more water usage (depending 
on the slabs). Discuss critically related aspects.

Solution: 

Centralized System 

Water bills (based on consumption) were presented in column 3 of Table 6.2 for 
each household. Here, the average household is charged | 225.90, and the average 
monthly water consumption is 28080 litres. 

Blockchain 

See how the Blockchain can improve the situation using peer-to-peer transactions. 
It works on tokenizing water into water currency and an open market. Below are the 
salient points:

(1) Household 1 will trade water currency equivalent to 1100 L of water, with 
Household 12 providing him the water currency for anything between | 7 and 
8 so that their usage falls below 25,000 L. 

(2) Household 2 will trade water currency promising 5400 L of consumable water 
to Household 6 for anything between | 7 and 9. 

(3) Household 3 will trade 10,300 tokens to Household 8 between | 8 and 9. 
(4) Similarly, Household 7 sells 600 L of water currency to Household 10. 
(5) Household 9 also sells 2400 L worth of water currency to Household 10.
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Table 6.2 Details of household numbers, water consumed per month, and water bill 

Household number (1) Water consumed (litre per month) (2) Water bill (|) (3)  

1 22,500 157.5 

2 18,200 127.4 

3 36,000 288 

4 42,000 336 

5 9900 49.5 

6 55,400 498.6 

7 14,100 84.6 

8 60,300 542.7 

9 12,600 75.6 

10 28,000 224 

11 0 0 

12 26,100 208.8 

13 54,500 490.5 

14 13,700 82.2 

15 27,900 223.2 

Table 6.3 Details of cost and lower and upper bounds of water usage 

Charges in | per 1000 L Consumption lower bound (litre 
per month) 

Consumption upper bound (litre 
per month) 

5 0 11,000 

6 11,000 15,000 

7 15,000 25,000 

8 25,000 50,000 

9 50,000 ∞

(6) Household 11 will sell 4500 L of water rights to Household 13, 2700 L of water 
rights to Household 14, and 2900 L worth of water currency to Household 15. 

See the impact of introducing only eight peer-to-peer interactions in the system 
(Table 6.4).

Figure 6.3 presents water usage for the month after trading water rights to optimize 
the slot-bound utilization. Also, the average water usage is the same, but the standard 
deviation becomes 15,425.91 L, which was 18,190.62 L in the centralized scenario. 
It means that households have made better use of their water rights. The distribution 
has become fairer.

Figure 6.4 presents related water bills. The average cost of a household just after 
a few peer-to-peer interactions has decreased to | 206.33, which is | 19.57 less than 
the previous, so 15 households have saved a combined | 293.55. The water is not 
consumed equally, but the low-consumption households have generated monetary
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Table 6.4 Details of house numbers and water usage per month 

Household number (1) Water usage in litres per month (2) Water bill (|) (3)  

1 22,500 + 1100 = 23,600 165.2 

2 18,200 + 5400 = 23,600 165.2 

3 36,000 + 10,300 = 46,300 370.4 

4 42,000 336 

5 9900 49.5 

6 55,400–5400 = 50,000 400 

7 14,100 + 600 = 14,700 88.2 

8 60,300–10,300 = 50,000 400 

9 12,600 + 2400 = 15,000 90 

10 28,000–600–2400 = 25,000 175 

11 0 + 4500 + 2700 + 2900 = 10,100 50.5 

12 26,100–1100 = 25,000 175 

13 54,500–4500 = 50,000 400 

14 13,700–2700 = 11,000 55 

15 27,900–2900 = 25,000 175 

Average water use 28,080 206.33

Fig. 6.3 Comparison of water usage in centralized and decentralized distribution systems
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Fig. 6.4 Comparison of water bills in centralized and decentralized distribution systems 

benefits from their water currency. For example, if Household 2 has traded water 
currency promising 5400 L of consumable water to Household 6 for | 8.5 per kilo 
litre of water, it costs | 7. It has generated 5.4 × (8.5 -7) = | 8.1 of monetary benefit. 

Also, the local authority spent | 200 per household. However, it generates | 
206.33 (not | 225.90), lower than before. It can be stated that a decentralized system 
is worthier than a centralized system. 

The average cost decreases, distribution becomes fairer, and the low-consumption 
household generates revenue by trading their water rights. The effect of such an 
intangible system is that the households will be more aware of their water usage. 
Figure 6.4, related to monetary benefit, may seem small, but remember that peer-to-
peer interaction is performed only between 15 households. Implementing the system 
on lakhs of users, including industrial and commercial, will significantly impact 
society. 

6.3 Recent ML Techniques 

6.3.1 Federated Learning 

Almost all the ML algorithms work with a central learning philosophy, where 
data collected will be in one place and used for training. In Federated Learning 
(FL), a secured distributed learning framework, individual client (or user) edge 
devices train the given ML model parallelly (and locally) without moving data to
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a central computing facility. This is to respect data privacy and regulations within 
the individual entities. Also, decentralized computation, generalization, scalability, 
and transfer of only encrypted processed parameters make the collaborative process 
more reasonable, robust, and adaptive (Banabilah et al., 2022; Wen et al., 2022). 

In a nutshell, individual devices train the models on the data available to them and 
send the parameters, such as weights, etc., in an encrypted format to a central server. 
It aggregates these comprehensively and transmits them back to the individual for 
further training until the model reaches the optimal state, terming it as a global model 
(Gupta & Gupta, 2023; Maroua, 2024). 

FL is classified into three categories established on data distribution, which is as 
follows: 

Horizontal or sample-based FL: Features used for the evaluation remained the 
same for all the individuals. However, datasets will be different for each entity. For 
example, two banks collect information on the customers (two different datasets). 
However, the information on features they collect from the customers is the same. 

Vertical or feature-based FL: Different features and some overlapping datasets 
define this FL. For example, a person with the name X takes a bank loan [defined 
with features (p, q, r)] and invests it at another place [defined with features (s, t, u)]. 
When working on tax purposes, the name of person X is identified by the first set 
of features in one place and the second set of features in another place. Here, there 
is an overlap in the name. If required, these two sets of features can be combined to 
make it a complete dataset for person X. 

Transferred FL: It is almost similar to vertical feature-based FL except for a small 
sample space. 

Points to Be Noted 

• There is no control over the quality of the data sent by individual devices. 
• There is likely an imbalance of data while training by individual entities. It means 

there is no minimum threshold of datasets for training, and it will vary depending 
on the data available with individual entities. 

• Datasets transmitted by each device are anticipated to be independent. Their distri-
bution is expected to be identical. These requirements may not be feasible in most 
situations. 

• Edge devices may be heterogeneous. 

Some of the areas where potentiality exists are medical research, finance, or 
organizations. 

6.3.2 Neural Architecture Search 

Most of the architectures in deep learning are developed using trial and error 
approaches, which consumes considerable time. However, there is no guarantee
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that the architecture developed is optimal and suitable to the chosen problem 
(Chitty-Venkata et al., 2023). 

Neural Architecture Search (NAS) is one of the algorithms that made inroads into 
this domain of finding logical architectures based on robust mathematical frame-
works. NAS is employed by a number of researchers (Elsken et al., 2019; Poyser &  
Breckon, 2024). It works on three following principles: 

Search space: Possible architectures that can be studied. Earlier knowledge of 
architecture may ease the search space. 

Search strategy: Mechanism of identifying the best-performing architecture from 
search space. Some of the search strategies include EA, Random Search, and 
Bayesian Optimization. 

Performance evaluation of search strategy: Estimating the efficacy of search 
strategy. 

6.3.3 Miscellaneous Techniques 

There are a number of ML techniques that have a lot of potential to be applied to 
real-world problems. A list of those techniques with related references is provided 
in Table 6.5 for the benefit of readers. 

Table 6.5 Additional techniques falling under advanced aspects of ML techniques 

Topic (in alphabetical order) References 

Autoencoders Chen and Guo (2023), Li et al. (2023a), 
Berahmand et al. (2024), Qian et al. (2022) 

Auto ML Salehin et al. (2024), Baratchi et al. (2024), Singh 
and Joshi (2022), Vaccaro et al. (2021) 

Capsule Networks Patrick et al. (2022), Haq et al. (2023), Pawan and 
Rajan (2022), Mazzia et al. (2021) 

Deep Q Networks Jain et al. (2022), Huang (2020), Talaat (2022) 

Explainable Artificial Intelligence: Ali et al.  (2023), Naser (2021), Tantithamthavorn 
and Jiarpakdee (2021), Ghosh et al. (2024), Love 
et al. (2023) 

Generative Adversarial Network Aggarwal et al. (2021), Gonog and Zhou (2019), 
Lee (2023), Nayak et al. (2024), Jozdani et al. 
(2022) 

Graph Neural Networks Khemani et al. (2024), Zhou et al. (2020), Corso 
et al. (2024), Besharatifard and Vafaee (2024), Sun 
et al. (2023) 

Neural Network Pruning and Quantization Liang et al. (2021), Zhang et al. (2022), Alqahtani 
et al. (2021),  Cai et al.  (2023a) 

Neural Style Transfer Singh et al. (2021), Cai et al. (2023b), Li et al. 
(2020a)



172 6 Emerging Research Areas

6.4 Evolutionary Algorithms 

EAs are rapidly expanding their role in AI and allied fields, and most of them are 
motivated by the behaviour of living beings or nature. They are most flexible and 
can easily handle the challenges experienced by traditional algorithms, like complex 
constraints, local optima, and high dimensional non-linear problems. These situations 
are prevalent in real-world planning problems, where near-optimal solutions suffice. 
However, one bottleneck is that almost all algorithms are parameter-dependent. 
Sometimes, it is arduous to identify the precise values of these parameters that best fit 
the chosen problem. These algorithms are classified mainly into several categories. 
However, two salient categories are briefly discussed here. 

Biologically inspired EA consist of a population comprising a number of individ-
uals, each characterizing a search point in the feasible solution space. The workflow 
starts with random initialization of population, selection, recombination, and muta-
tion, and the process continues through several generations. The fitness of all the 
individuals is estimated. Individuals with worthier fitness are combined to create 
new individuals who may have better fitness than the previous generation. This 
activity continued until there was no change in fitness value in the successive gener-
ations (Reddy & Kumar, 2020). A sample structure is shown in Fig. 6.5. Two  major  
factors that hinder the successful evolution process are selective pressure and popula-
tion diversity. Reddy & Kumar (2020) provided detailed information about handling 
these challenges.

Behaviourally Inspired Swarm Intelligence (SI)-based algorithms are established 
on socio-cognition, which can be applied to unravel different optimization tasks. 
They are also population-based and similar to EA. However, mutation and recom-
bination are not part of this scheme. The members of a swarm work without any 
guidance and have stochastic behaviour. They utilize resources competently through 
collective group intelligence. A significant characteristic is self-organization, which 
facilitates the evolution of global-level responses employing local-level interactions. 
The system is randomly initialized with a population of individuals. These are then 
evolved over a number of generations by capturing the insect’s social behaviour to 
determine the optimal (Reddy & Kumar, 2020). Several excellent papers on meta-
heuristics and related topics are available. Representatives are presented in Table 6.6 
for the benefit of readers.

Several benchmarking functions are available for utilization in algorithms 
mentioned in Table 6.6 to evaluate their performance for single-objective and multi-
objective optimization problems (Hellwig & Beyer, 2019; Piotrowski et al., 2023; 
Volz et al., 2023). Later, suitable among these can be employed to unravel real-world 
challenging problems, which will increase policymakers’ confidence in possible 
implementation. 

Representative test functions employed in the single objective optimization 
category are Ackley’s, Bohachevsky, Booth’s, Bukin N.6, Colville, Drop wave, 
Easom, Eggholder, Goldstein-Prince, Griewank, Holder Table, Matyas Function, 
Michalewicz, Rastrigin, Rosenbrock (Banana), Schaffer N.2, Schwefel, Shekel,
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Fig. 6.5 The basic structure of an EA (Adapted from Reddy & Kumar, 2020 under CC BY- 4.0 
License)

Shubert, Six Hump, Camel Back, Sphere (Molga & Smutnicki, 2005; Surjanovic & 
Bingham, 2013). In the case of multiobjective optimization, the ZDT test suite, which 
comprises six different test problems, is employed by a number of researchers (Zitzler 
et al., 2000). These problems consist of two objectives, constraints and bounds. 

Note that these are representative test functions. Some others also exist. Readers 
are encouraged to study those for a better understanding. 

6.5 Large Language Model (LLM)-Based Generative AI 

LLM-based generative AI has the potential to simulate human-like dialogues and 
interactive, high-quality, and much more (https://www.elastic.co/what-is/large-lan 
guage-models). Several related AI tools exist for the mentioned functionality and are 
presented in Table A.1 of Appendix A.

https://www.elastic.co/what-is/large-language-models
https://www.elastic.co/what-is/large-language-models
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Table 6.6 Representative reference(s) where the EAs were discussed 

Name of the optimization algorithm topic Representative reference(s) where the technique is 
discussed in detail 

Archimedes Dhal et al. (2023), Fang et al. (2023), Hashim et al. 
(2021) 

Artificial Algae Turkoglu et al. (2022), Uymaz et al. (2015) 

Artificial Bee Colony Xiao et al. (2023), Zhao et al. (2022) 

Bacterial Foraging Chen et al. (2020), Guo et al. (2021) 

Bat Gagnon et al. (2020), Gandomi and Yang (2014), 
Shehab et al. (2023) 

Biogeography Sang et al. (2021), Wei et al. (2022) 

Black Hole Abualigah et al. (2022a), Deeb et al. (2022) 

Chicken Swarm Wang et al. (2023a), Liang et al. (2023), Zhang 
et al. (2023), Zouache et al. (2019) 

Crow Search Askarzadeh (2016), Hussien et al. (2020) 

Cuckoo Search Mohamad et al. (2014), Xiong et al. (2023) 

Elephant Clan Jafari et al. (2021) 

Elephant Herding Li et al. (2020b) 

Equilibrium Elmanakhly et al. (2021), Faramarzi et al. (2020), 
Yang et al. (2022a) 

Fish Swarm Pourpanah et al. (2023), Tan and Mohammad-Saleh 
(2020) 

Gravitational Search Mittal et al. (2021), Rashedi et al. (2009), Yang 
et al. (2022b) 

Grey Wolf Mirjalili et al. (2014), Pan et al. (2021), Wang and 
Li (2019) 

Harmony Search Kim (2016), Wang et al. (2023b) 

Henry Gas Solubility Hashim et al. (2019), Li et al. (2022b), Mohammadi 
et al. (2022) 

Honey Badger Hashim et al. (2022) 

Imperialist Competitive Abdollahi et al. (2013), Bernal et al. (2017), 
Hosseini and Al Khaled (2014) 

Indicator García et al. (2021), Yuan et al. (2022), Li et al. 
(2023b) 

Jellyfish Search Chou and Molla (2022), Chou and Truong (2021), 
Manita and Zermani (2021) 

Krill Herd Bolaji et al. (2016), Wang et al. (2019), Gandomi 
and Alavi (2012) 

Learner performance-based behaviour Rahman and Rashid (2021) 

Meta-Heuristic Abdel-Basset et al. (2018), Alorf (2023), Khanduja 
and Bhushan (2020), Rajwar et al. (2023), 
Rajalakshmi and Kanmani (2022), Velasco et al. 
(2024),  Wong  and Ming (2019)

(continued)
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Table 6.6 (continued)

Name of the optimization algorithm topic Representative reference(s) where the technique is
discussed in detail

Moth Flame Mirjalili (2015), Nadimi-Shahraki et al. (2023a), 
Sahoo et al. (2023), Shehab et al. (2020) 

Mountain Gazelle Abdollahzadeh et al. (2022) 

Mountaineering Team Faridmehr et al. (2023) 

Multiverse Benmessahel et al. (2020),  Mirjalili et al.  (2016) 

Red Fox Połap & Woźniak (2021) 
Reptile Search Abualigah et al. (2022b), Khan et al. (2023), Sasmal 

et al. (2024) 

Salp Swarm Duan et al. (2021), Hegazy et al. (2020), Mirjalili 
et al. (2017) 

Sand Cat swarm Kiani et al. (2023), Wu et al. (2022), Seyyedabbasi 
& Kiani  (2023) 

Shuffled frog leaping Maaroof et al. (2022), Zhao et al. (2024) 

Social Spider Feng et al. (2022), Yu and Vok (2015), Zhao et al. 
(2017) 

Spider Monkey Agrawal et al.  (2023) 

Swarm Intelligence Brezočnik et al. (2018), Tang et al. (2021), 
Figueiredo et al. (2019) 

Symbiotic Organisms Search Ezugwu & Prayogo (2019), Cheng & Prayogo 
(2014), Gharehchopogh et al. (2020) 

Teaching–Learning Gómez Díaz et al.  (2022), Xu et al. (2022) 

Teamwork Dehghani & Trojovský (2021) 

Walrus Han et al. (2024) 

Whale Mirjalili & Lewis (2016), Nadimi-Shahraki et al. 
(2023b), Rana et al. (2020) 

Wild Horse Naruei & Keynia (2022), Zheng et al. (2022)

One of the most prominent tools in this category, the Chat Generative Pre-Trained 
Transformer (ChatGPT), is discussed in detail for the benefit of the readers. It is 
established on Deep Neural Network (DNN) architecture with unsupervised pre-
training initially and later supervised fine-tuning. 

The latest version in this series, GPT 4.0, provides improved Natural Language 
Processing (NLP) abilities, handling large datasets, more extended consecutive 
outputs, and contextual inferencing, resulting in an engaging conversation. Its flex-
ibility to provide relevant information in any domain, including coding tasks and 
correcting program errors, makes ChatGPT unique (Ray, 2023). Dempere et al. 
(2023) studied the effect of ChatGPT on higher education, Foroumandi et al. (2023) 
on hydrology and earth sciences, Huang & Tan (2023) on scientific communication 
and Nikolic et al. (2023) on assessment of engineering education.
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A comparison of ChatGPT and Google Bard is made by McGowan et al. (2023) for  
the psychiatry literature search context and Cheong et al. (2023) for patient education 
material for obstructive sleep apnoea. Furthermore, Agarwal et al. (2023) applied 
ChatGPT, Bing, and Bard to develop reasoning-based questions in the domain of 
Medical Physiology, and Lim et al. (2023) in the context of trauma nerve laceration 
patients. The strengths and limitations of ChatGPT are discussed in detail. 

Strengths 

1. It saves considerable time and improves productivity. Relevant lengthy keywords 
with a focussed domain help explore ChatGPT to its full potential. Otherwise, it 
may give some output that may not be related to your query. 

2. Diverse content can likely be generated with similar keywords, which may 
provide a broader view to the user. 

Limitations 

1. Limited exposure of ChatGPT for a specific query for which it was not trained 
may result in inaccurate or incomplete output. 

2. The resulting output may not be authentic, necessitating a further investigation 
before utilization. 

3. There is a risk of plagiarism for generated content. It is always advisable to verify 
the generated content with plagiarism-related software. 

4. A graphical visualization facility is not available at present. This means that 
considerable effort is required to understand the intricacies of the results and 
possible inferences. 

5. Memory may become exhausted during the processing of a large amount of 
conversations and other related tasks. 

In summary, disrupting users’ creative thinking processes, skill sets, and expres-
sion abilities is a significant concern. However, limiting AI tools is not the solution, 
and a trade-off is necessary (Nah et al., 2023; Ray et al., 2024; Roumeliotis & 
Tselikas, 2023). The impact of these AI tools on society must also be studied holisti-
cally. Most of the strengths and limitations mentioned in ChatGPT are also applicable 
to some of the tools mentioned in Table A.1. Remarks in Table A.1 are based on the 
limited understanding of the tools by the authors of the book. Readers are strongly 
advised to verify thoroughly before working on any tool. 

6.6 IoT, Big Data, and DSS 

IoT is a network of objects established with sensors and devices and has connectivity 
capabilities. It has gained much prominence due to its strength to monitor data in real 
time. It empowers them to gather and swap data over the internet for further modelling 
applications. It also provides flexibility to make quick decisions and understand risks 
and vulnerabilities. This, in turn, helps assess proactive and predictive maintenance
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requirements, which minimize downtime. The architecture comprises four layers: 
sensing, network, data processing, and application. Relevant information is as follows 
(Jena, 2023): 

1. The sensing layer is the first layer for gathering data from various sources. It 
consists of sensors and other measuring devices to collect information, such as 
the number of vehicles, temperature in a lake, pollution at a given location, etc. 

2. The network layer connects with the sensing layer with wireless or wired 
communication protocols. Its primary function is to facilitate information sharing 
between devices in the IoT structure. 

3. The data processing layer collects data from the devices using software and hard-
ware components and processes it for further analysis. One example is using 
data in AI, EA, and other models where their outcomes provide insights to 
decision-makers. 

4. The application layer is the user interface layer. 

In IoT and similar data acquisition procedures, large volumes of data will be contin-
uously generated from various sources, termed Big data (Kapliński et al.,  2016). Big 
data analysis is helpful for process improvements, predicting long-term trends, and 
many more. However, the following challenges remain to utilize generated data to 
the fullest extent (Thayyib et al., 2023): 

• Data quality: Available data are expected to be of good quality without incon-
sistencies and errors. This may not be possible sometimes due to multiple data 
sources. For example, land use information is retrieved from satellite images, 
water quality is acquired from sensors, and reservoir inflows are collected from 
conventional measuring devices. There must be efficient data integration and veri-
fying mechanisms, which are expected to save the analyst’s time. In this context, 
sensors and other data-acquiring devices are to be calibrated to create confidence 
in the measurement system. 

• Data privacy: There is a likelihood that data may be leaked, stolen, or manipulated 
during the transmission stage, which may lead to erroneous outcomes from the 
modelling. Encryption and cyber security are some measures that can be explored 
to minimize the impact. 

• Human resources: The requirement of skilled experts for big data analytics is a 
bottleneck. It can be overcome by training the human resources to be focused and 
sustainable. 

• Data storage: Cost-effective processing of ever-growing data is a perennial 
challenge. One of the solutions may be to use cloud facilities. 

As mentioned earlier, the data generated from the procedures are valuable inputs 
to DSS and assist policymakers in a complex, data-driven environment. Its adapt-
ability to technology, data analysis, and models is an added advantage driven by the 
following components (Alamanos et al., 2021; Alshami et al., 2023; Gheibi et al., 
2023).
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• Models: They are crucial in decision-making. They will be helpful in fore-
casting outcomes for different possible scenarios expected to yield multi-faceted 
decisions. 

• User interface: A window through which policymakers interact with the DSS. 
It consists of data visualizations in graphical format, dashboard, and query 
interfaces. 

• Knowledge-based system: Domain-specific knowledge provided by the expert 
and resulting rules developed by the analyst guide the decision process. 

• Decision process: It depends entirely on previous components for formulating 
logic that drives decisions. 

However, in most DSSs, almost all the components mentioned here are involved in 
successful decisions. The involvement of experts is of paramount importance, as they 
can identify whether the decision was implemented and the effects of the decision 
are as expected after implementation. The feedback mechanism is an essential and 
inevitable task that facilitates continuous improvement of DSS over time. 

6.7 Taguchi Design of Experiments 

Taguchi’s approach, a statistical method for the design of experiments, became promi-
nent due to the advantage of identifying factors and levels among the available that 
contribute significantly to the outcome (Ginting & Tambunan, 2018; Kacker et al., 
1991). This process also substantially enhances the efficacy of ML algorithms in the 
context of parameter tuning and selecting only relevant factors and levels (Li et al., 
2024). It has two working principles: an orthogonal array and a signal-to-noise (S/N) 
ratio. Before moving forward, a brief introduction of terminology helps to understand 
the philosophy of the Taguchi approach. 

Factor: Variable, feature, or parameters. 

Response: Outcome. 

Levels: Discrete values of factor(s) between lowest and highest values (for example, 
20 and 100). Researchers can divide the range into any number of levels depending 
on the problem requirement and computational resources available. For example, 
levels can be 20, 40, 60, 80, 100 (representing five levels) and denoted respectively 
as 1, 2, 3, 4, 5. 

Suppose a researcher is considering five factors and two levels. In that case, 
25, i.e., 32 simulation runs, are required to thoroughly study the chosen problem 
(Table 6.7), which is termed a full factorial design. Sometimes, these are manageable 
for conducting simulation runs.

However, if there are six factors and four levels, the runs required is 46, i.e., 
4096, which is impractical for performing the simulation. This means that with an 
increment in levels and factors, the number of runs will increase.
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Table 6.7 Full factorial design 

Run Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 

1* 1 1 1 1 1 

2 1 1 1 1 2 

3 1 1 1 2 1 

4* 1 1 1 2 2 

5 1 1 2 1 1 

6 1 1 2 1 2 

7 1 1 2 2 1 

8 1 1 2 2 2 

9 1 2 1 1 1 

10 1 2 1 1 2 

11 1 2 1 2 1 

12 1 2 1 2 2 

13* 1 2 2 1 1 

14 1 2 2 1 2 

15 1 2 2 2 1 

16* 1 2 2 2 2 

17 2 1 1 1 1 

18 2 1 1 1 2 

19 2 1 1 2 1 

20 2 1 1 2 2 

21 2 1 2 1 1 

22* 2 1 2 1 2 

23* 2 1 2 2 1 

24 2 1 2 2 2 

25 2 2 1 1 1 

26* 2 2 1 1 2 

27* 2 2 1 2 1 

28 2 2 1 2 2 

29 2 2 2 1 1 

30 2 2 2 1 2 

31 2 2 2 2 1 

32 2 2 2 2 2 

* Part of an orthogonal array, L8
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In these types of situations, an orthogonal array, a downsized or fraction of full 
factorial design, plays a significant role. It is a two-dimensional matrix. Column 
denotes employed factors, whereas row denotes simulation runs with information 
of levels for the employed factors. For the problem of 2 features and 5 levels, an 
orthogonal array is L8. It means eight simulation runs, which is a substitution for 32 
runs. It reduces computational requirements and is scientifically validated (Cimbala, 
2014; Fraley et al., 2024). (*) repesrents Orthogonal Array in Table 6.7. 

The S/N ratio is a measure to understand the efficacy of each simulation run in 
the context of smaller being better (in case of cost), larger being better (in case of 
benefit), or nominal being the best. These situations are based on the chosen criteria. 

In summary, the following are the steps. 

1. Identify the relevant factors, number of levels (corresponding values for each 
factor), and orthogonal array. 

2. Execute the simulation for the number of rows in the orthogonal array and 
analyze. 

3. Computation of S/N ratio. 
4. Identify key levels of factors and further analysis. 

A detailed procedure of Taguchi with a demonstrative example is provided by 
Ginting & Tambunan (2018). Frey (1998) provided excellent information about 
orthogonal arrays. 

You can find the number of research papers associated with the combined applica-
tion of the Taguchi approach and ML. Representative applications where the Taguchi 
approach is part are optimization of the hybrid cooling array and LSTM (Li et al., 
2024), Hydrogen separation and decision tree (DT), SVM and ensemble method 
(Chen et al., 2024), and Smart manufacturing systems and ML (Nejati et al., 2024). 

6.8 Data Augmentation 

It is the process of adding artificial data when available real-world data is too small 
(or not available) or too costly to acquire for training purposes of ML algorithms. It 
is a known fact that ML algorithms require large amounts of diverse data to bring 
meaningful inferences. 

If added scientifically, there is likely a chance of improved generalization, mini-
mization of over-fitting, and improved accuracy. One of the ways is to modify 
the original real-world data with minor changes. Another way to synthetically 
generate high-quality data is by using generative adversarial networks, variational 
autoencoders, deep neural networks, neural style transfers, or similar algorithms. 

You can find a number of applications of data augmentation in healthcare (Garcea 
et al., 2023; Goceri, 2023), Finance (Ranjbaran et al., 2023), Water Quality (Mahlathi 
et al., 2022), Power Sector (Chen et al., 2021), and more. Representative data sources 
are available in Table A.2 of Appendix A.
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6.9 Cross-Validation 

Here, the model is executed on the number of sub-datasets (or folds). One of the folds 
is used for validation, whereas the remaining folds are for training. Iteratively, the fold 
used for validation changes, and accordingly, the remaining folds are employed for 
training (Madhuri et al., 2021). Accordingly, performance measures can be computed 
for each iteration, and the average performance measure is used as the basis to 
understand the model efficacy. It is also one of the approaches to make the model 
more generalized without over-fitting (it is a challenge in the ML model, where it 
performs well for training and is unsatisfactory on the testing data). 

There are also a number of approaches in this category, such as Holdout validation, 
K-fold cross-validation, and more. In the case of K-fold, it aggregates results from 
various chosen training and testing datasets and shows an unbiased picture of the 
algorithm performance on a given dataset. 

Tougui et al. (2021) employed cross-validation techniques for diagnostic appli-
cations, Kaliappan et al. (2023) for Early Detection of Intrauterine Fetal Demise, 
whereas Kee et al. (2023) for Smart and Lean Pick-and-Place Solution. 

Revision Questions and Exercise Problems 

6.1 What is the functionality of Blockchain? 
6.2 What is the difference between a centralized and decentralized system? 
6.3 What are smart contracts? 
6.4 What are the features of immutability in Blockchain? How are these going to 

help or accelerate the decentralized process? 
6.5 What are blocks and nodes in the water management ecosystem? 
6.6 What may be the function of the stakeholders in the Blockchain process? 
6.7 How does IoT help the Blockchain process? 
6.8 What is tokenization in Blockchain? 
6.9 What is water currency? 

6.10 What are the benefits of Blockchain? Discuss critically. 
6.11 What is the purpose of consensus algorithms? What are popular consensus 

algorithms? 
6.12 How do PoW and PoS differ? 
6.13 Who are miners? 
6.14 What is the computational process of adding the block to the Blockchain? 
6.15 What is meant by a puzzle in the Blockchain process? 
6.16 What is meant by reward and hash? 
6.17 What is Nonce? 
6.18 What is PoET? Mention a few limitations of implementing PoET. 
6.19 Discuss the architecture of Blockchain. 
6.20 What is the difference between water currency creation, transfer, and consump-

tion? 
6.21 What is FL? What are the various steps in this modelling technique? 
6.22 What is NAS? Explain mathematical philosophy.



182 6 Emerging Research Areas

6.23 List some of the techniques that are in the advanced category of ML techniques. 
6.24 List some of the techniques that are in the advanced category of optimization 

techniques. 
6.25 What are the meta-heuristic optimization algorithms? 
6.26 What are different swarm intelligence methods? On what mathematical basis 

were they developed? 
6.27 What is meant by AI tools? 
6.28 What is the purpose of ChatGPT? 
6.29 What is IoT? How does it help to improve the data collection process? 
6.30 How are IoT and Big Data related? 
6.31 What is a DSS? How many components are part of it? 
6.32 What are the advantages and disadvantages of a DSS? 
6.33 What is Taguchi’s design of experiments? 
6.34 What is data augmentation? In what situations can it be used? 
6.35 What is cross-validation? 

Advance Review Questions 

6.36 Discuss two case studies related to Blockchain. 
6.37 Discuss the potential applications of Blockchain in engineering. 
6.38 Do you think Blockchain is suitable for water resources in developing 

countries? If yes or no, justify the same. 
6.39 How do you select the suitable algorithm for your domain of interest? What 

are the criteria you use for this purpose? 
6.40 What is the meaning of self-adaptive? How does it work? Mention four case 

studies where a self-adaptive mechanism was employed. 
6.41 Is there any possibility to relate ML and optimization algorithms? If yes, 

discuss it critically. If no, provide the reason why it is not possible. 
6.42 Can you mention the name of any algorithm universally applicable to all 

situations? 
6.43 Discuss four case studies related to IoT in your domain of interest. 
6.44 Do you think DSS applies to AI in the present scenario? Critical discussion is 

highly suggested, preferably with examples. 
6.45 Is there any possibility that DSS can be developed in a fuzzy context? If so, 

how they can function? 
6.46 Are you encouraging AI tools to mimic human logic? Discuss the same in detail 

in the context of literature review, examination, and syllabus preparation.
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Chapter 7 
Case Studies 

7.1 Introduction 

The present chapter provides brief information about representative case studies 
related to Machine Learning, Fuzzy Inference Systems, Neuro-Fuzzy Inference 
Systems, Fuzzy Cognitive Mapping, Fuzzy Cluster Analysis, optimization, fuzzy 
extensions, and many more, demonstrating the potential of these techniques in various 
domains. In addition, areas of further research work are also part of this chapter. 

The chosen research papers are organized into Civil, Chemical, Mechanical, Elec-
tronics and Computer Science Engineering, and Management (Fig. 7.1) and presented 
in Tables 7.1, 7.2, 7.3, 7.4, and 7.5, respectively.

The first column in each table provides information about the authors. The second 
column briefly discusses the application, techniques, and performance measures. The 
third column focuses mainly on case studies and data sources. The fourth column 
presents remarks/inferences for a comprehensive view of the research work. Wher-
ever the number of inputs or outputs is more in the studied research paper, information 
about a smaller number of inputs and outputs is only presented. It is represented as 
inputs (representative) or outputs (representative). 

The full paper can be accessed if the institution has a journal subscription or the 
journal is in the open-access category. Note that a very brief description is provided 
in this chapter based on the authors’ understanding of the work, which may not be 
logical sometimes. Readers are strongly advised to study the paper before applying 
it to their research work or further learning. In addition, several state-of-art review 
papers on the topics are presented in the appendix. Notations were expanded when-
ever they appeared for the first time in the text. Later, only notations were given to 
minimize repetition. In addition, notations were presented at the start of the book for 
a comprehensive understanding of the reader.
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Fig. 7.1 Organization of the chapter
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Table 7.2 Case studies related to Chemical Engineering 

Author(s) (1) Application, techniques, and 
performance measures 
employed (2) 

Case study, data 
source (3) 

Remarks/inferences, 
(4) 

Fang et al. 
(2022) 

Prediction of chemical 
toxicity 
RF, MLR 
R2 

1792 experimental 
toxicants towards 
Tetrahymena 
pyriformis 

Inputs: 9 in number 
Output: Chemical 
toxicity 
RF performed well 

Al-Wahaibi et al. 
(2023) 

Fault identification in 
chemical processes 
Local Global scale CNN, 
CNN, CNN-LSTM, 
multiscale CNN, Global 
Feature CNN, ANN, Fisher 
Discriminant Analysis 
Fault Diagnosis Ratio, 
Precision, F1-score, TPR, 
FNR 

Fault diagnosis, 
benchmark 
Tennessee Eastman 
process dataset, 
52 (includes 11 
manipulated 
variables); 20 
simulations 

Inputs: The image is 
transformed from 
multivariate 
time-series data 
Outputs: Fault 
classification 
Local Global scale 
CNN is the best 

Theisen et al. 
(2023) 

Digitization of chemical 
process flow diagrams 
Pixel-based search 
algorithm, Faster R-CNN 

1005 flowsheets Inputs: Process flow 
diagrams 
Outputs: 47 classes 
considered for drawing 
styles of unit 
operations 
The proposed 
approach performs 
better 

Zhang et al. 
(2023b) 

Industrial process fault 
diagnosis 
GRU-Enhanced Deep CNN, 
Deep CNN, GRU 
Fault Diagnosis Time, FPR, 
Fault Diagnosis Rate 

An acid gas 
absorption process, 
Benchmark 
Tennessee Eastman 
process 

GRU-enhanced deep 
CNN is the best for 
two case studies 

Xu et al. (2023) Batteries health state 
CNN-LSTM-Skip 
algorithm, CNN-LSTM, one 
more algorithm 
RMSE, R2, MAE  

NASA (18,650 
lithium-ion 
batteries), 
Oxford battery aging 
datasets (8 Kokam 
lithium-ion 
batteries), 

Inputs: Current, 
voltage, sampling 
time, IC curve, 
temperature, Base 
model 
Output: Battery health 
state 
For Oxford datasets: 
An additional feature 
is accumulated 
capacity 
CNN-LSTM-Skip 
algorithm performs 
better than the 
remaining two

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Nogueira et al. 
(2023) 

Prediction of NOx and CO2 
emissions 
RF, SHAP, PCA, Factor 
Analysis, Independent 
Component Analysis 
R2 

Experimental testing 
with different 
operating conditions 
Six-cylinder 
compression-ignition 
engine with gas 
natural modes, dual 
fuel, diesel 
40 samples 

Inputs: Fuel rail 
pressure, substitution 
ratio, air–fuel 
equivalence ratio, start 
of injection 
Outputs: Emissions, 
Brake thermal 
efficiency, filter smoke 
number 
RF is found to capture 
the relationship 
efficiently 

Zafari & Ghaemi 
(2023) 

CO2 capture optimization 
Radial Basis Function 
(RBF), ANN, Buckingham 
Pi theorem, Response 
Surface Methodology 
(RSM) 
MSE, R2, Average Absolute 
Relative Error (AARE) 

Experimental data Inputs (representative): 
Reaction rate constant, 
amine concentration, 
CO2 concentration, 
total pressure, CO2 
partial pressure, CO2 
diffusion coefficient in 
gas phase and liquid 
phase, thickness of gas 
film 
Output: Mass transfer 
flux 
RBF is the best 

Yang et al. 
(2023) 

Graphene oxide membrane 
optimization 
GA-BPANN, RF, SVM, 
BPANN 
R2, MAE, MAPE, MSE, 
RMSE 

72 Graphene oxide 
sheets obtained 
during 2017–2021 

Inputs: Interlayer 
spacing between the 
graphene oxide sheets, 
Operation pressure, 
roughness and 
thickness of graphene 
oxide layer, zeta 
potential 
Outputs: Water flux 
and rejection 
GA-BPANN is the best 

Ge et al. (2023) Detection of heavy metal 
pollutants 
Terahertz spectroscopy, 
SVM, Deep SVM, DNN 
Precision, Accuracy, 
F1-score, Recall 

180 experimental 
datasets 

Deep SVM is superior 
to SVM and DNN

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Zarei et al. 
(2023) 

Removal efficacy of 
hydrogen Sulphide 
MLR, SVM 
R2, RMSE, Efficacy 

Experimental setup Inputs (representative): 
Concentration of 
hydrogen sulphide in 
the biogas stream input 
to the biofilter 
Output: H2S removal 
efficiency 
SVM results are 
tallying with 
experimental data 

Qian et al. 
(2023) 

Prediction of Urban Gas 
Consumption 
CatBoost hybridized with 
(Phasor PSO, Artificial Bee 
Colony, Satin Bowerbird 
algorithm, Battle Royale 
Optimizer, GWO, Fruit  Fly  
Optimization Algorithm, 
Urban Gas Consumption) 
RMSE, MAPE, MAE, RAE, 
R2, Normalized MSE 

4477 datasets Inputs: Pressure, price, 
humidity, temperature, 
wind speed 
Output: Urban gas 
consumption 
Catboost-Phasor PSO 
had the best 
performance 

Godwin et al. 
(2023) 

Combustion performance 
prediction of 
ethanol-powered spark 
ignition engine 
ANN, Ensemble Least 
Squares Boosting ML 
techniques 
R2, RMSE, MSE, MAE 

Experimental 
datasets 

Inputs: Brake-specific 
fuel consumption, 
engine load 
Outputs: Exhaust gas 
temperature, 
hydrocarbons, 
brake thermal 
efficiency, carbon 
dioxide, carbon 
monoxide, nitrogen 
oxides under different 
operating situations 
Ensemble Least 
squares boosting ML 
is the best compared to 
ANN

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Ahmadi et al. 
(2020) 

Flash separator fuzzy 
dynamic modelling 
Mamdani FIS 
MAPE 

Knowledge base and 
experimental setup 

Inputs: Feed 
temperature, feed 
pressure, outlet gas 
pressure, outlet liquid 
pressure, feed-molar 
fraction 
Outputs: Gas molar 
fraction, separator 
temperature, separator 
level, separator 
pressure, liquid molar 
fraction 
The proposed number 
of  rules is 552 

The linguistic 
composition variable 
method is used to 
decrease rules to 7150 

Dubey et al. 
(2023) 

Modelling for Cr (VI) 
adsorption 
ANFIS 
SSE, MSE, RMSE, R2 

Experimental-based Inputs: Stirring rate 
and time, initial 
concentration, contact 
time, dosage, pH 
Output: Cr (VI) 
Adsorption 
ANFIS can simulate 
the experimental data 

Morone et al. 
(2021) 

Valorization of organic 
waste flows 
FCM using ANN 

National analysis to 
understand the 
Italian waste system 
Experts interaction 

Economic and 
financial strategies and 
improvement in 
collection systems 
yield positive effects 
on the outcomes 

Liu et al. (2022) Prediction of ozone 
Evidential Reasoning 
(ER)-FCM, Real-coded 
GA-FCM, PSO-FCM, 
NHL-FCM, Simple Average 
model-FCM, Weighted 
Average model-FCM, 
Majority Voting model-FCM 
MAE, MSE, RMSE, 
Friedman, and Nemenyi 
tests 

Data from Fuyang 
City and Lanzhou 
City 

Causes: CO, NO2, 
SO2, temperature and 
humidity 
Effect: Prediction of 
O3 trend 
ER-FCM achieves 
relatively better 
prediction accuracy

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Xue et al. (2018) Cluster analysis of Japanese 
pollutant release and transfer 
register to understand 
release and toxicity 
characteristics 
FCMe 
Xie and Beni Index, 
Partition coefficient 

Classification of 462 
chemicals 

Cluster fuzziness is 2 
15 chemical features 
comprise releases and 
toxicities 
Classified into 5 
clusters 
FCMe classified 
effectively 

Jafarzade et al. 
(2023) 

Modelling Cadmium in 
groundwater resources 
ANFIS-FCMe, ANFIS-SC 
R2, Sum of Square Error 
(SSE), RMSE 

51 sampling 
locations, 158 water 
samples at 
Neyshabur city, 
Central desert of Iran 

Inputs: Dissolved 
solids, 
electroconductivity, 
turbidity, pH 
Output: Cadmium 
availability 
ANFIS-FCMe is 
slightly better than 
ANFIS-SC 

Zhang et al. 
(2023c) 

Prediction of hybrid 
nanofluids 
ANFIS-SC, Grid 
Partitioning, FCMe 
MSE, MAE, MAPE, R2, WI  

Experimental 
datasets 

Inputs: Density, 
thermal conductivity 
ratio, specific heat 
capacity, dynamic 
viscosity ratio 
Output: 
Thermophysical 
properties of hybrid 
nanofluids containing 
multiwalled carbon 
nanotubes and oxide 
nano-sized materials 
Optimal grid 
partition-ANFIS is 
better than other 
ANFIS approaches in 
modelling thermal 
conductivity and 
specific heat

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Elshenawy et al. 
(2022) 

Fault detection and 
diagnosis strategy 
PCA, KNN, PCA-KNN, 
FCMe, FCMe-KNN 
Fault detection and alarm 
rates, Precision, Accuracy 

Numerical example: 
Tennessee Eastman 
chemical process 
600 samples 

41 process 
measurements and 11 
manipulated variables 
are employed 
16 faults are 
recognized as step 
changes 
FCMe-KNN approach 
reduced the 
computational cost 
The optimum cluster 
size was identified 
based on indicators 

Leite et al. 
(2023) 

Adiabatic styrene reactor 
optimization 
Generalized DE 

Experimental and 
related studies 

Analyzed single and 
multiobjective (three 
objectives) 
Pareto sets were 
obtained for different 
reactor configurations 
The effect of the steam 
ratio on reactor 
efficacy was studied 

Cortez-González 
et al. (2023) 

Process optimization 
DE, Aspen one 
Weighted function and 
dynamic self-adaptive 
techniques 

Five benchmark 
functions 

Dynamic self-adaptive 
technique supported 
by DE is the best 

Zhang et al. 
(2021b) 

Application potentiality of 
multiobjective dynamic DE 
with parameter self-adaptive 
strategies 
Other algorithms that 
coupled to multiobjective 
DE are: Non-dominated 
Sorting Genetic Algorithm 
(NSGA-II) and GWO, 
Self-adaptive Mutation 
Operator, Ranking-based 
Mutation Operator, 
Individualized-Instruction 
TLBO Inverted generational 
distance, Spread 

Tests on 18 
numerical 
experiments and 
benchmark functions 
and 3 biochemical 
processes 

The self-adaptive 
model performed 
better than the 5 
competitors

(continued)
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Table 7.2 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Bi et al. (2023) Discrimination technique of 
biomass slagging tendency 
PSO-DNN, RNN, LSTM 
F1-score, Accuracy, Recall, 
Precision, Spearman 
correlation analysis 

114 types of biomass 
obtained from 
various sources are 
the datasets 

Inputs: Biomass ash 
content (%) and 13 
types of chemical 
elements 
Output: Slagging type 
PSO-DNN is the best 

Wang et al. 
(2022b) 

Potentiality of RF, MLP, 
SVM, PSO, GB for 
hyperparameter tuning 
process; 
NSGA-II-based 
multiobjective optimization; 
a number of multicriteria 
decision-making techniques 
R2 

Two case studies, 
combustion process 
in a power plant and 
supercritical water 
gasification process 

An integrated 
framework is helpful
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Table 7.3 Case studies related to Mechanical Engineering 

Author(s) 
(1) 

Application, techniques, and 
performance measures 
employed (2) 

Case study, 
data source (3) 

Remarks/inferences, (4) 

Zhang & 
Yin (2021) 

Modelling from the image of 
particles to mechanical 
characteristics 
CNN, Bi-LSTM 
MAE, MAPE, MSE 

200 datasets of 
biaxial tests 
generated 
using the 
2-dimensional 
discrete 
element 
method; 600 
images 

CNN precisely acquired the particle 
information 
Bi-LSTM captured impacts of 
relative density and particle 
morphology on global mechanical 
behaviour of granular materials 

Wan et al. 
(2023) 

Prediction of power load 
LSTM, CNN-LSTM, 
CNN-LSTM-Attention-based 
mechanism 
Pearson Correlation 
Coefficient (PCC), MAE, 
MAPE, RMSE 

Two thermal 
power (stream 
turbine) units; 
Daily 
operation data 
of 250 
dimensions 
from a steam 
turbine unit, 
Zhejiang 
Province, 
China 

Inputs: Temperature, pressure, 
flow-related features 
Output: Short-term power load 
CNN-LSTM-Attention mechanism 
is the best 

Abbaskhah 
et al. 
(2023) 

Horizontal axis wind turbine 
optimization 
CNN, MLP 
MSE, MAE, SSE, R2 

Data from 
numerical 
simulation 

Inputs: Pitch angle, rotation speed, 
wind speed, dimpled or original 
blades 
Output: Torque, thrust 
MLP and CNN are performing 
better 

Ranawat 
et al. 
(2023) 

Blockage detection in 
centrifugal pump 
Bi-LSTM, LSTM, SVM, 
SVM–Grid Search 
Optimization, 
SVM– Bayesian 
Optimization, XGBoost 
F1-score, Accuracy, Recall, 
Precision 

The 
experimental 
facility, 10 
different pump 
conditions; 
5000 samples 

LSTM performance is superior to 
Bi-LSTM and others in terms of 
accuracy 

Tian et al. 
(2023) 

The remaining effective life 
of turbofan engine prediction 
Spatial correlation and 
temporal attention-based 
LSTM, number of related 
algorithms (variations) 
RMSE, Score 

Datasets 
correspond to 
two different 
turbofan 
engine 
simulations 

Spatial correlation and temporal 
attention-based LSTM performance 
is the best

(continued)



7.1 Introduction 225

Table 7.3 (continued)

Author(s)
(1)

Application, techniques, and
performance measures
employed (2)

Case study,
data source (3)

Remarks/inferences, (4)

Yuan et al. 
(2023) 

Prediction of mechanical 
behaviours of nitrile 
butadiene rubber materials 
Self-adaptive PSO-ANN, 
ANN-Levenberg–Marquardt, 
ANN-Gradient Descent, 
PSO-ANN, WGAN 
MSE, R2, RMSE  

Experimental 
setup 

Input: Stress 
Output: Strain 
Stress–strain relationships of rubber 
materials with various hardness and 
loading rates are studied 
Self-adaptive PSO-ANN is the best 

Liu et al. 
(2023) 

Composition design of 
high-performance copper 
alloy 
ANN-GA 
MSE 

Experimental 
setup 

Inputs: Number of alloys 
Output: Performance of copper 
alloys 
ANN-GA demonstrated good 
agreement with experimental 
output 

Zhou et al. 
(2023) 

Fault diagnosis 
Fuzzy regular least squares 
twin SVM extended to a 
multiclassification algorithm 

Data of 
bearing fault 
diagnosis 

Fuzzy regular least squares twin 
SVM algorithm has good 
generalization and anti-outlier 
ability; it also has higher reliability 
of fault diagnosis 

Ding et al. 
(2023) 

Fuel cell air compressor 
performance prediction 
BPANN optimized by GA 
and SVM, GA-BPANN-SVM 
MAE, MAPE, RMSE, R2 

264 
Experimental 
datasets 

Inputs: Corrected speed and 
pressure ratio 
Output: Corrected flow rate 
GA-BPANN-SVM showed a good 
performance than others 

Gao et al. 
(2023) 

Noise recognition of moving 
parts in the sealed cavity 
Fused ML-based on 
CatBoost, XGBoost, LR; 
XGBoost, CatBoost, RF, DT, 
LR, XGBoost-LR, 
CatBoost-LR 
Accuracy, Recall, Precision, 
F1-score, AUC-ROC 

5 datasets 
from UCI 
public datasets 
(266,196 
samples), 5 
noise datasets 
(14,731 
samples) from 
PIND devices 

The accuracy of the fused 
technique is higher than that of 
traditional stacking 

Xiang 
et al. 
(2024) 

Prediction of metal tubes 
bending performance 
Parameters—weight-adaptive 
CNN, VGG, ResNet, 
Densenet; RF for ranking the 
input parameters; ABAQUS, 
Latin Hypercube Sampling 
R2, MAPE,  WI, NSE  

Datasets of 
6061 
aluminium 
tubes, 
experimental 
verification 

Inputs: Tube process and geometric 
parameters related to pressure die 
Outputs (representative): Short-axis 
variation rate, wall-thickening, 
thinning ratios 
Parameters—weight-adaptive-CNN 
performed best

(continued)
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Table 7.3 (continued)

Author(s)
(1)

Application, techniques, and
performance measures
employed (2)

Case study,
data source (3)

Remarks/inferences, (4)

Çağıl et al.  
(2023) 

Prediction of vibration of a 
diesel engine 
MLR, ANFIS 
R2, MSE, MAE, RMSE  

2074 
experimental 
datasets 

Inputs: x-axis and y-axis (m/s2), 
NH3 additive rate, engine speed (m/ 
s), RMS (m/s2) 
Output: Vibration magnitude 
computed with z-axis (m/s2) 
ANFIS is the best 

Sundar & 
Mewada 
(2023) 

Thermal performance factor 
of nanofluids 
MLP-ANN, ANFIS 
RMSE, MSE, R2 

Experimental 
setup 

Inputs: Volume of concentration, 
Reynolds number 
Output: Thermal and frictional 
entropies, thermal performance 
factor, energy efficiency 
ANFIS is the best 

Zare et al. 
(2022) 

Wind energy deployment 
pathways 
FCM-based approach 

Wind energy 
deployment in 
Iran 
Data mainly 
through 
surveys 

26 criteria belong to 6 groups, i.e., 
economic, political, technological, 
social, legal, and environmental. 
Interlinkages between them are also 
discussed 
4 possible scenarios 
10 logistic terms to define positive 
and negative relationships among 
criteria 

Pereira 
et al. 
(2020) 

Impacts of energy-change 
FCM—System Dynamic 
Approach 

Portugal Analyzed the role of FCM and 
system dynamic approach 

Tung et al. 
(2023) 

Voronoi structures 
optimization 
GA, Finite Element 
Simulation 

Experimental 
setup 

Voronoi structures optimized by the 
GA enhanced strength, stiffness, 
and toughness values by ∼30% 

Song et al. 
(2023) 

Layout of wind farm 
Adaptive Granularity 
Learning Distributed PSO, 
Yawed Gaussian Wake, and 
Wake Merging Models 

Various data 
sources to 
replicate 
realistic wind 
farm 

Adaptive granularity learning 
distributed PSO solves the problem 
effectively
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Table 7.4 Case studies related to Electronics and Computer Science Engineering 

Author(s) (1) Application, techniques, and 
performance measures 
employed (2) 

Case study, data 
source (3) 

Remarks/inferences, 
(4) 

Nayak et al. 
(2021) 

Hand gesture recognition 
Memetic Firefly technique with 
LGBoost, NB, Linear 
Regression (LiR), Stochastic 
Gradient Descent, Linear and 
Quadratic Discriminant 
Analyzer, RF, DT, KNN, 
LGBoost, GB, Adaboost, 
Firefly Technique with 
LGBoost 
Precision, Accuracy, F1-score, 
Recall, AUC-ROC 

5 hand postures of  
12 users 

The Memetic Firefly 
technique with 
LGBoost is superior 
to that of others 

Takahashi et al. 
(2022) 

Data supplement for 
brain–computer interface 
system 
Electroencephalogram, 
CNN-LSTM, Common Spatial 
Pattern, Fully connected ANN 
with features, extraction, 
Empirical mode decomposition 

200 recordings for 
each subject 

Created 300 artificial 
data from 60 real-data 
CNN-LSTM and an 
empirical mode 
decomposition 
process improved 
electroencephalogram 
pattern recognition 

Kilincer et al. 
(2022) 

Comprehensive intrusion 
detection environment 
GB, LGBoost, XGBoost, 
Catboost, AdaBoost, KNN, NB, 
MLP, DT, Extra Tree Algorithm 
Accuracy, Recall, Precision, 
F1-score 

Laboratory-based 
Detection datasets 

LGBoost is the best 

Koşar & 
Barshan (2023) 

Activity recognition 
LSTM, 1D and 2D CNN, 1D 
and 2D CNN-LSTM 

Daily and sports 
activities, UCIHAR 
dataset 

The present study is 
compared with other 
published articles. 
2D-CNN-LSTM is 
superior to other 
employed techniques 

Rajeshkumar 
et al. (2023) 

Smart office automation 
Faster R-CNN-based face 
recognition with IoT, VGG-16, 
SVM, Deep CNN, and two 
more algorithms 
Accuracy, Specificity, 
Sensitivity 

8421 face images in 
RGB format 

The accuracy range of 
Faster R-CNN is 
superior

(continued)
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Table 7.4 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Tan et al. (2023) Microarchitecture-level fault 
injection environment 
Saca-FI, CIFAR-10 CNN, 
LeNet-5, VGG-16 
Reliability-associated 
architectural vulnerability 
factor 

Simulation 
analysis: CIFAR-10 
CNN with Cifar-10 
dataset, LeNet-5 
with MNIST 
dataset, VGG-16 
with ILSVRC-2012 
dataset 

Saca-FI mechanism 
helps assess 
vulnerability aspects 
and construct reliable 
systolic array-based 
CNN accelerators 

Khan et al. 
(2023) 

Malware detection 
Squeezed-Boosted 
Boundary-Region 
Split-Transform-CNN, MLP, 
SVM, AdaBoost 
Accuracy, Precision, 
Sensitivity, Mathews 
Correlation Coefficient, 
F1-score, AUC-ROC 

IoT Malware 
dataset 
Total images 3959 
(Benign ware 2486 
and Malware 1473) 

Squeezed-Boosted 
Boundary-Region 
Split-Transform-CNN 
is performing well 
than others 

Menaka & 
Samraj (2023) 

Edge system recommendation 
for cloud service providers 
Hybrid CNN-LSTM 

Kaggle online 
web-based 
repository 

Hybrid CNN-LSTM 
captured the process 
effectively 

Adedeji (2023) Energy consumption prediction 
Multifunctional ANN, 
Multioutput inverse function 
ANN 
MSE, MAE, RMSE 

Battery electric 
vehicle as a case 
study 

An extensive survey 
on electric vehicles is 
also part of the paper 
9 inputs and 9 outputs 
The accuracy of 
multifunctional ANN 
is greater than that of 
multi-output inverse 
function ANN 

Muruganandam 
et al. (2023) 

Prediction of K-barriers for 
intrusion detection 
DL-based Feed-Forward ANN, 
GRNN, RF, and one more 
algorithm, Monte Carlo 
Simulation, Binary Sensing 
Model, Mersenne Twister 
random number generator 
RMSE, R2 

Synthetic data 
using Monte Carlo 
simulation and 
related approaches 

DL-based 
feed-forward ANN is 
better than the 
remaining techniques 
that were applied

(continued)
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Table 7.4 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Cao et al. 
(2023) 

Prediction of power load 
Improved XGBoost with a 
Random Grid Search and 
Windowed Mechanism, 
LGBoost, XGBoost, RF, 
LGBoost-XGBoost, 
CNN-LSTM 
Symmetric MAPE, MAE, PCC, 
RMSE, MAPE, Median 
absolute error, Cosine 
similarity, One-Way ANOVA 

Electricity Load 
Diagrams based on 
data of 370 
sub-stations from 
January 1, 
2011-January 1, 
2015, Portugal 
EMC, UKDALE, 
REFIT datasets 

Improved XGBoost 
with a Random Grid 
Search and Windowed 
Mechanism predicted 
short-term power load 
effectively 

Anbarasu et al. 
(2020) 

Maximum power point tracking 
of the grid-integrated solar 
system 
ANFIS-based Fractional Order 
Proportional Integral Derivative 
Controller 
Percentage error 

Intensive and 
operative data 
developed based on 
the voltaic cell 
model 

Improved 
ANFIS-based 
controller is more 
efficient than regularly 
employed controllers 

Dong et al. 
(2021) 

Recognition of eye movement 
Soft multifunctional electronic 
skin, ANFIS 
PCA 

Soft 
multifunctional 
electronic skin 
mechanism 
gathered the 
Electrooculogram, 
temperature, and 
hydration data, 200 
datasets 

Inputs: 
Electrooculogram, 
sweat signals, skin 
temperature 
Output: Eye 
movement 
Integrating ANFIS 
with a soft, 
multifunctional 
electronic skin 
mechanism can solve 
eye movement 
tracking problems 

Chen et al. 
(2022a) 

Ventricular arrhythmia 
classification 
3-dimensional phase space 
diagram, FCMe 
F1-score, Sensitivity, Accuracy, 
Specificity, FPR, Discovery, 
Negative rates, Positive and 
Negative Predictive Values 

32 healthy subjects 
from the PTB 
Diagnostic 
Database; 32 
arrhythmic subjects 
from the CU 
Ventricular 
Tachyarrhythmia 
database 

FCMe facilitates the 
prediction of a 
prospective 
arrhythmia before it 
happens, and its 
category

(continued)
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Table 7.4 (continued)

Author(s) (1) Application, techniques, and
performance measures
employed (2)

Case study, data
source (3)

Remarks/inferences,
(4)

Kumar et al. 
(2023) 

Arrhythmia detection from 
electrocardiogram signals 
Coupled FCMe and DNN, RF, 
LR, KMe, Gaussian Naive 
Bayes, KNN, SVM, DT, CNN 
Feature Extractor 
Recall, Precision, F1-score, 
Accuracy 

Benchmark datasets Coupled FCMe and 
DNN are superior 
compared to other 
employed techniques 
for arrhythmia 
detection 

Tyagi & Jha 
(2023) 

Wireless sensor network 
FCMe-based indices 
Energy-centric reputation 
index, internodal distance, 
relevance index method, degree 
of the node, distance to the sink 

Simulation studies 27 rules are 
formulated 

Ma et al. (2023) Complex contact phenomena 
Self-optimized ANN, GA-
Sequential Quadratic 
Programming-ANN, GA-ANN 
MSE 

Simulation studies GA-sequential 
quadratic 
programming-ANN is 
better than the 
remaining models 

Chandra et al. 
(2023) 

Higher ensured life span of IoT 
in 5G network 
GA, Improved GA-Binary 
ACO, Improved GA- Fast 
Non-Dominated Sorting 
Network Simulator-2 
Remaining nodes’ longevity, 
Computing time, Energy 
efficiency 

Experimental setup Improved GA-fast 
non-dominated sorting 
achieves a higher 
lifetime and lower 
computation time 

Zhuang et al. 
(2023) 

Cooperative spectrum sensing 
Siegel distance-based Fusion 
Strategy, DE-cooperative 
Spectrum Sensing, 
Symmetrized Kullback–Leibler 
divergence-based DE 

Simulation 
modelling 

Symmetrized 
Kullback–Leibler 
divergence-based DE 
is the best 

Narayanan 
et al. (2023) 

K-barrier count intrusion 
detection system 
PSO-ANN, existing DT, NB, 
Monte Carlo Simulation 
Number of invasions, R2, 
RMSE, Accuracy, Precision 

Monte Carlo 
Simulation-based 
synthetic datasets, 
University of 
California ML 
repository 

PSO-ANN produced 
90% intrusion 
detection accuracy
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7.2 Further Research Work 

No algorithm can be universally employed for all real-world problems. An in-depth 
understanding of problem-specific knowledge may help to achieve faster and more 
efficient solutions to a real-world planning problem. 

The following potential research areas are identified based on the extensive studies 
by the authors (including critical analysis of chapters 2–6 in this book). They can be 
implemented in any domain of engineering, science, and management, which are as 
follows: 

1. Study the applicability of existing AI algorithms to various domains to ascertain 
their potentiality. 

2. Developing new algorithms that efficiently handle non-linear, non-convex, non-
differentiable, and multi-modal functions and comparing them with the existing 
algorithms is a potential research area. 

3. Many researchers have developed several evolutionary algorithms. However, 
few algorithms are only frequently applied to a specific domain. In addition, 
hybridization of multiple algorithms is another potential area of research. 

4. Extending AI and EA into the fuzzy-based uncertain framework is a promising 
research area. 

5. Identifying optimal parameter values in AI algorithms is a significant concern 
and has enormous potential. EA plays a major role in this direction. 

6. Many researchers employed ANFIS, which is partially established on ANN 
philosophy. The application of DL in the ANFIS framework is a promising 
research area that can be explored. 

7. FCM can be trained with more algorithms, such as HL and EA, to improve its 
applicability to real-world situations. 

8. Hybridization of Blockchain, FIS, and EA is another research area highly suitable 
for societal-related challenges. 

Representative books and journals related to AI are available in Appendix B and 
will benefit readers of the book for enhanced understanding on the topic. 

Revision Questions and Exercise Problems 

7.1 Compile case studies related to FIS, ANFIS, and FCM and provide salient 
conclusions. 

7.2 What are the salient observations made while studying case studies related to 
ML? 

Advance Review Questions 

7.3 Analyze research papers published in domains mentioned in this chapter related 
to ANFIS, FIS, and FCM. Present five research areas that are suitable for further 
work. 

7.4 Discuss six recently published research papers on ML and their fuzzy exten-
sions in chemical, mechanical, and computer science domains. What are 
the techniques applied, and how was hyperparameter tuning made for the 
parameters?
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Appendix A 
Representative AI Tools and Data Sources 
Related to AI 

Table A.1 presents insight into representative AI tools. Table A.2 presents representa-
tive data sources that may be useful while working on AI algorithms. The reader will 
also find several other tools and datasets (other than those mentioned in Table A.1 
and. A.2) from various sources that can be explored.
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Table A.1 Insight of representative AI tools 

Name of AI tool Webpage link Salient remarks# 

Content generation 

ChatGPT https://chat.openai.com/ It is a chatbot that responds to user 
queries appropriately and creates 
content and other applications 

Google Bard AI https://bard.google.com/u/1/ 
chat 
https://bard.google.com/u/1/faq 

It is a chatbot that responds to user 
queries appropriately and assists in 
translating languages, creating 
content, and interacting with other 
Google applications 

Open AI Playground https://platform.openai.com/pla 
yground 
https://gpt3demo.com/apps/ope 
nai-gpt-3-playground 

It is a conversational chatbot that 
facilitates a wide range of tasks. It 
mainly focuses on technical research 
and development, allowing users to 
experiment with various ML 
algorithms and fine-tune them using 
custom datasets. It is highly beneficial 
in developing ML-based applications 

The New Bing https://www.microsoft.com/en-
us/edge/features/the-new-bing? 
form=MT00D8 

It is a chatbot that allows users to 
generate text, letters, and code. It also 
provides in-depth answers and 
summarizes information 

Perplexity https://www.perplexity.ai/ It is a chatbot and search engine that 
provides comprehensive solutions to 
user queries with the help of NLP and 
ML 

Jasper chat https://www.jasper.ai/chat It facilitates a conversational 
environment, similar to a coworker or 
AI assistant. It does not require much 
knowledge to apply prompts 
efficiently. It allows many threads to 
explore different topic-related queries 
at a time 

Chatsonic https://writesonic.com/chat It is a chatbot that can deliver 
conversational human-like responses 
to user queries and instantly help 
identify the frame of words to express 
ideas, develop information for 
advertising commercials, and get 
digital marketing plans 

Claude https://claude.ai/login?return 
To=%2F 

It is trained on the most recent 
real-time data, enabling it to respond 
to current events 

Llama https://www.llama2.ai/ It is a chatbot that provides 
appropriate responses to user queries 

Pi (Personal AI) https://pi.ai/talk It provides users access to 
high-quality conversation

(continued)
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Table A.1 (continued)

Name of AI tool Webpage link Salient remarks#

Quora Poe https://poe.com/ It utilizes advanced techniques in NLP 
and ML to quickly and effectively 
address user queries by exploring the 
extensive information repository 
accessible on Quora 

DialoGPT https://huggingface.co/docs/tra 
nsformers/model_doc/dialogpt 

It is trained with causal language 
modelling on conversational data. 
Influential at response generation in 
open-domain dialog systems 

Character AI https://beta.character.ai/ It is a chatbot that adopts natural 
language models to respond similarly 
to experts. Users can simultaneously 
design characters to interact with 
fictitious, historical, and celebrity 
personalities, gaining various 
perspectives 

Replika https://my.replika.com/signup/ 
subscription 

It is an interactive and personalized 
chatbot 

Chai AI (Chai = chat 
+ AI) 

https://www.chai-ai.com/ It provides a text communication 
platform with AI chatbots. It is 
available on both Android and iPhone 
Operating System (iOS) 

YouChat https://you.com/search?q=Is+ 
You.com+on+WhatsApp%3F& 
fromSearchBar=true&tbm=you 
chat&cid=c2_c2dc3872-c6f9-
4119-a1d5-256902cf7aa0 

It offers a prompt through which users 
can make a search query. As a result, 
the system provides the user with an 
AI-generated response and webpage 
links for verification 
Users can also explore images, videos, 
news articles, maps, and other relevant 
content 

Copy AI https://app.copy.ai/projects/342 
54106?tool=chat&tab=results 
https://www.elegantthemes. 
com/blog/marketing/copy-ai 

It is a writing tool that uses ML to 
produce various forms of content, 
such as blog headlines, emails, social 
media material, and website copy 

Frase https://www.frase.io/tools/ai-
content-generator/ 

It is a content generation tool that 
allows users to research, write, and 
optimize the content quickly and 
effectively 

Fireflies.ai https://fireflies.ai It is a generative AI that uses ChatGPT 
to schedule meetings. It also generates 
transcripts and summaries for Zoom, 
Google Meet, and Microsoft Teams

(continued)

https://poe.com/
https://huggingface.co/docs/transformers/model_doc/dialogpt
https://huggingface.co/docs/transformers/model_doc/dialogpt
https://beta.character.ai/
https://my.replika.com/signup/subscription
https://my.replika.com/signup/subscription
https://www.chai-ai.com/
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://you.com/search%3Fq%3DIs+You.com+on+WhatsApp%3F%26fromSearchBar%3Dtrue%26tbm%3Dyouchat%26cid%3Dc2_c2dc3872-c6f9-4119-a1d5-256902cf7aa0
https://app.copy.ai/projects/34254106%3Ftool%3Dchat%26tab%3Dresults
https://app.copy.ai/projects/34254106%3Ftool%3Dchat%26tab%3Dresults
https://www.elegantthemes.com/blog/marketing/copy-ai
https://www.elegantthemes.com/blog/marketing/copy-ai
https://www.frase.io/tools/ai-content-generator/
https://www.frase.io/tools/ai-content-generator/
https://fireflies.ai


248 Appendix A: Representative AI Tools and Data Sources Related to AI

Table A.1 (continued)

Name of AI tool Webpage link Salient remarks#

Summarization 

Elicit https://elicit.org/ It summarizes papers, extracts data, 
and synthesizes findings of the 
research papers to make an effective 
literature survey 

PopAI https://www.popai.pro/?utm_ 
source=google&utm_medium= 
YM_popai&utm_campaign= 
0801&utm_term=in&utm_con 
tent=general_others&gclid=Cj0 
KCQjwmvSoBhDOARIsAK6a 
V7iAGfhMYOg56odIDXaPY 
T46jlaKYOtXzs4K6KWHQJ 
ZsiSTSHl2-EIcaAhymEALw_ 
wcB 

It helps prepare presentations, flow 
charts, coding answers, prompt 
generators, educational and 
professional writing 

Learnt.ai https://learnt.ai/ It majorly helps in content 
development by using appropriate 
prompts. Very useful for education 
purposes 

Socrat.ai https://socrat.ai/ It utilizes Google’s AI and search 
technologies to facilitate the 
connection between students and 
educational resources available on the 
Internet 

Coding related 

GitHub Copilot X https://github.com/enterprise/ 
trial?ref_cta=free%2520trial& 
ref_loc=banner&ref_page=blog 

It assists users with various 
coding-related tasks and helps fix bugs 
in code 

Amazon 
Codewhisperer 

https://aws.amazon.com/cod 
ewhisperer/resources/#Getting_ 
started/ 

It helps users overcome code-relevant 
errors and also provides valuable 
solutions 

Paraphrasing 

Wordtune https://app.wordtune.com/edi 
tor/documents/1e3272fc-b967-
4e75-a4b4-45167f926d3d 

It aids in rephrasing text, generating 
citations, summarizing long 
paragraphs into key sentences, 
checking grammar, and detecting 
plagiarism 

Prepostseo https://www.prepostseo.com/ It is a web-based program that allows 
content optimization, plagiarism 
detection, Paraphrasing, etc. 

Quillbot https://quillbot.com/settings? 
menu=plan 

Paraphrasing tool, Grammatical 
checker 

Spinbot https://spinbot.com/ Paraphrasing tool, Grammatical 
checker

(continued)
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Table A.1 (continued)

Name of AI tool Webpage link Salient remarks#

Word AI https://wordai.com/ Paraphrasing tool 

Speedwrite https://speedwrite.com/creati 
ve-app 

Paraphrasing tool 

Anyword https://anyword.com/paraphras 
ing-tool/ 

Paraphrasing tool 

Hypotenuse AI https://www.hypotenuse.ai/ Paraphrasing tool 

Edit pad 
Paraphrasing Tool 

https://www.editpad.org/tool/ 
paraphrasing-tool 

Paraphrasing tool 

Good Content https://www.semrush.com/goo 
dcontent/paraphrasing-tool/ 

Paraphrasing tool 

ProWritingAid https://prowritingaid.com/par 
aphrasing-tool 

Paraphrasing tool 

SpinnerChief https://www.spinnerchief.com/ Paraphrasing tool 

DupliChecker https://www.duplichecker.com/ 
article-rewriter.php 

Paraphrasing tool 

Elsa speak https://elsaspeak.com/en/inf It helps to improve pronunciation and 
English-speaking skills 

Virtual Assistant## 

Murf AI https://murf.ai It helps as a voice generator, 
eliminating the entire process of 
manually generating voiceovers and 
enabling users to produce human-like 
responses quickly 

Siri https://www.apple.com/in/siri/ It helps to send texts and make calls 

Cortana https://www.microsoft.com › 
en-us › cortana 

It is a personal productivity assistant in 
Microsoft 365 and helps users achieve 
more outcomes with less effort 

Cleo https://web.meetcleo.com It facilitates financial-related 
budgeting, saving, and building credit 

Amazon Alexa https://alexa.amazon.com It offers customers natural voice 
experiences in a more intuitive way 

Google Assistant https://assistant.google.com It helps to handle the schedules, set 
reminders, manage the schedule, 
manage the smart home, and do many 
more things 

# Remarks were taken from the relevant sources to convey the functionalities better 
## Many AI-based personal assistants (virtual assistants) work on mechanisms such as NLP to 
take text and voice commands. They can handle many activities similar to humans. For example, 
making telephone calls, scheduling meetings, creating text messages, setting reminders, calling 
taxis, managing workflow, reading the text, etc. These are expected to automate monotonous and 
time-consuming activities, making humans focus on essential tasks
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Table A.2 Representative data sources 

Data source Link Brief remarks 

Kaggle https://www.kaggle.com/dat 
asets 

263,555 free public datasets (as 
per the website) that can be used 
in AI and allied fields, namely, 
computer science, education, 
classification, computer vision, 
data visualization, pre-trained 
models, and many more 
Representative datasets include 
customer shopping trends, 
consumer behaviour and 
shopping habits, credit card 
fraud detection, global food 
price inflation, and heart attack 
risk prediction 

Data Flair https://data-flair.training/ 
blogs/machine-learning-dat 
asets/ 

70 + ML Datasets are part of 
this website. Some of the related 
datasets are Mall Customers, 
Iris, MNIST, The Boston 
Housing, Fake News Detection, 
SOCR data–Heights and 
Weights, Parkinson, Titanic, 
Uber Pickups, Chars74k, Credit 
Card Fraud Detection, Chatbot 
Intents, AI-generated Faces, and 
many more 

DataONE https://www.dataone.org/ It is a community-driven 
program giving avenues to data 
across multiple member 
repositories in the domain of 
earth and environment 

DataPortals https://dataportals.org Detailed list of open data portals 

Datasetlist.com https://www.datasetlist.com A list of ML datasets is 
available 

Macgence https://macgence.com/ It can design a customized 
AI-based data collection 
program that addresses the 
needs of various applications 

Microsoft datasets https://www.microsoft.com/ 
en-us/research/tools/? 

An index of datasets, software 
development kits, and other 
open-source codes created by 
Microsoft researchers is 
available. In addition, the 
website maintains a collection 
highlighting some of the tools

(continued)
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Table A.2 (continued)

Data source Link Brief remarks

Mendeley Data https://data.mendeley.com/ It is a free and cloud-based 
repository. Data can be stored, 
shared, and accessed anywhere 

Dept. Mechanical Engg., 
Faculty of Engineering and 
Design, University Bath, 

https://researchportal.bath.ac. 
uk/en/organisations/depart 
ment-of-mechanical-engine 
ering/datasets/ 

Website provided datasets 
related to various domains 

Fraunhofer IPT and the 
Fraunhofer FFB 

https://www.bigdata-ai.fraunh 
ofer.de/s/datasets/index.html 

ML datasets from the 
production environment 
compiled by the Fraunhofer: 
IPT (https://www.ipt.fraunhofe 
r.de/) and the Fraunhofer FFB 
(https://www.ffb.fraunhofer.de/) 

V7 labs https://www.v7labs.com/blog/ 
best-free-datasets-for-mac 
hine-learning 

65 + free datasets for ML. 
Representative datasets include 
Open Dataset Aggregators, 
Public Government, Finance 
and Economics, Images for 
Computer Vision, Natural 
Language Processing, Data 
Visualization, Audio Speech, 
and Music 

MIT Libraries https://libguides.mit.edu/eecs/ 
mldata 

Electrical Engineering & 
Computer Science: Data 
sources for AI and ML 

Electrical and Computer 
Engg., Grainger College of 
Engg., University of Illinois 
Urbana-Champaign 

https://experts.illinois.edu/en/ 
organisations/electrical-and-
computer-engineering/dat 
asets/ 

Website provided datasets 
related to various domains 

Electronic Engineering, 
University of York, Faculty 
of Sciences 

https://pure.york.ac.uk/portal/ 
en/organisations/electronic-
engineering/datasets/ 

Website provided datasets 
related to various domains 

Electronic and Electrical 
Engg., Faculty of Engg., 
University of Strathclyde, 
Glasgow, UK 

https://pureportal.strath.ac.uk/ 
en/organisations/electronic-
and-electrical-engineering/dat 
asets/ 

Website provided datasets 
related to various domains 

iguazio https://www.iguazio.com/ 
blog/best-13-free-financial-dat 
asets-for-machine-learning/ 

The website provided 13 free 
financial datasets for ML 

iMerit https://imerit.net/blog/20-best-
finance-economic-datasets-
for-machine-learning-all-pbm/ 

The website provided 20 
financial and economic datasets 
for ML 

data.world https://data.world/datasets/fin 
ance 

The website provided 1096 
finance-related datasets
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